Whiteflies cause considerable losses to crops, directly by feeding, and indirectly by transmission of viruses. The current control methods consist of a combination of different control tactics, mainly still relying on unsafe and non-ecofriendly chemical control. RNA interference (RNAi) is a post-transcriptional gene-silencing strategy in which double-stranded RNA (dsRNA), corresponding specifically to a target gene, is introduced in a target organism. Research on RNAi in the previous decade has shown its success as a potential insect control strategy, which can be highly species-specific and environment friendly. In whiteflies, the success of dsRNA delivery through the oral route opened possibilities for its management through plant-mediated RNAi. To date, several genes have been targeted in whiteflies through RNAi and these assays demonstrated its potential to manage whiteflies at lab level. However, further research and investments are needed to move toward an application at field level. In this review, for the first time, we collected the literature on genes targeted for silencing via RNAi in whiteflies and discuss the potential of RNAi in whitefly pest control. We also discuss likely delivery methods, including transgenic in planta delivery and symbiont-mediated delivery, and its potential for studying and interfering with insecticide resistance mechanisms and virus transmission by whiteflies. K E Y W O R D S endosymbionts, functional genomics, resistance mechanism, RNA interference, whitefly Arch. Insect Biochem. Physiol. 2019;100:e21522.wileyonlinelibrary.com/journal/arch
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml(-1)) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t1/2) ranging between 0.40 and 5.47 days.
Twenty three bacterial isolates either pure or consortium were initially screened on the basis of their ability to degrade as well as dechlorinate 4 -chlorobenzoic acid (4-CBA). Based on comparative growth response, three pure isolates Pseudomonas putida GVS-4, Pseudomonas aeruginosa GVS-18 and Pseudomonas aeruginosa GWS-19 and a consortium SW-2 was fi nally selected for further fi studies. The enzyme studies performed with cell free extracts revealed that dehalogenase activity was substrate specifi c with maximum activity at 300 μgml fi -1 substrate concentration. Catechol 1,2 dioxygenase activity was found to be present in cell free extracts suggesting that 4 -chlorobenzoic acid (4-CBA) is catabolized by ortho-ring cleavage pathway. The dehalogenase enzyme profi le showed single fi enzyme band in case of GVS-4 (Rm 0.76), GVS-18 (Rm 0.84), GWS -19 (Rm 0.85) and two bands in SW-2 (Rm 0.71 & 0.10).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.