Aberrant upregulation of mitochondrial biogenesis is observed in breast cancer and holds potential therapeutic option. In our work, we showed that inhibition of mitochondrial function by anisomycin is effective against triple-negative breast cancer (TNBC). Anisomycin inhibits growth and induces caspase-dependent apoptosis in a panel of TNBC cell lines. Of note, anisomycin at a tolerable dose remarkably suppresses growth of TNBC in mice. In addition, anisomycin effectively targets breast cancer angiogenesis through inhibiting capillary network formation, migration, proliferation, and survival. Mechanistic studies show that although anisomycin activates p38 and JNK, their activations are not required for anisomycin's action. In contrast, anisomycin inhibits mitochondrial respiration, and decreases mitochondrial membrane potential and adenosine triphosphate (ATP) level. The inhibitory effect of anisomycin is significantly reversed in mitochondria respiration-deficient ρ0 cells. As a consequence, anisomycin activates AMPK and inhibits mammalian target-of-rapamycin signaling pathways. Our work demonstrated that anisomycin is a useful addition to the treatment armamentarium for TNBC.
Clubroot caused by Plasmodiophora brassicae is a destructive disease of cruciferous plants worldwide. A quantitative PCR (qPCR) system specific to P. brassicae was developed. Analysis of the qPCR sensitivity indicated that the lower limit of detection was 1 × 101 resting spores/mL, 1 × 102 spores/g soil, and 1 × 103 spores/g roots and seeds. The regression curves generated from the qPCR data of different samples had a parallel relationship. The difference between the theoretical and actual concentrations was lowest at 1 × 105 spores/g sample, compared to other concentrations. The P. brassicae biomass in soil and plant root tissues after inoculated with different spore concentrations was correlated. A correlation analysis confirmed that the clubroot incidence and disease index at six weeks after inoculation increased as the spore concentration increased. Under field conditions, the natural inoculum density of P. brassicae population decreased at early stage and then increased with P. brassicae mainly being detected at a soil depth of 0–50 cm. The horizontal distribution of P. brassicae varied in the field with occurrences of hot spots. This study established a qPCR-based method for quantitative detection of clubroot. The developed assay is useful for monitoring the spatiotemporal dynamics of P. brassicae in the field. It may also be applicable for clubroot forecasting as a part of proactive disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.