Lactic acid is a “metabolic waste” product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells’ effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors.
Treatment of cancer in humans requires a thorough understanding of the multiple pathways by which it develops. Recent studies suggest that nuclear receptor coactivator 4 (NCOA4) may be a predictive biomarker for renal cancer. In the present work, TCGA, GEPIA, and several bioinformatics approaches were used to analyze the NCOA4 expression patterns, prognostic relevance, and association between NCOA4 and clinicopathological features and immune cell infiltration. We investigated NCOA4 expression in malignancies. Low NCOA4 expression was associated with poor overall survival in individuals with malignancies such as cholangiocarcinoma, colon adenocarcinoma, and clear cell renal carcinoma. We also analyzed NCOA4 DNA methylation in normal and primary tumor tissues and investigated possible functional pathways underlying NCOA4-mediated oncogenesis. In conclusion, downregulation of NCOA4 is associated with poor prognosis, and NCOA4 may be a predictive biomarker for COAD.
Background: The polypyrimidine tract-binding protein (PTBP) nuclear ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3, regulate the process of cell proliferation, differentiation, apoptosis and carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However, the role of PTBPs in pan-cancer remains unclear. Our study examined the clinical significance and mechanism of PTBPs in pan-cancer.Methods: We compared the expression of PTBPs in paired and unpaired tissue samples from the Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression, Kaplan–Meier curves, and time-dependent receiver operating characteristic (ROC) curves were used to assess the prognostic significance of PTBPs in pan-cancer. The cBioPortal database also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer were used to investigate the relationship between PTBP expression and immune subtypes, immune checkpoint (ICP) genes, tumor mutational burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells, and chemosensitivity. cBioPortal was used to search for PTBP co-expressing genes in pan-cancer, and GO and KEGG enrichment analyses were performed to search for PTBP-related signaling pathways.Results:PTBPs were shown to be widely upregulated in human tumor tissues. PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were differentially expressed in tumor immune subtypes and had a strong correlation with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME). In addition, PTBP expressions were related to ICP, TMB, and MSI, suggesting that these three PTBPs may be potential tumor immunotherapeutic targets and predict the efficacy of immunotherapy. Enrichment analysis of co-expressed genes of PTBPs showed that they may be involved in alternative splicing, cell cycle, cellular senescence, and protein modification.Conclusion: PTBPs are involved in the malignant progression of tumors. PTBP1, PTBP2 and PTBP3 may be potential biomarkers for prognosis and immunotherapy in pan-cancer and may be novel immunotherapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.