Background Phenylketonuria (PKU) is a metabolic disease that can cause severe and irreversible brain damage without treatment. Methods Here we developed a non-invasive prenatal diagnosis (NIPD) technique based on haplotypes via paired-end molecular tags and weighting algorithm and applied it to the NIPD of PKU to evaluate its accuracy and feasibility in the early pregnancy. A custom-designed hybridization probes containing regions in phenylalanine hydroxylase (PAH) gene and its 1 Mb flanking region were used for target sequencing on genomic and maternal plasma DNA (7–13 weeks of gestation) to construct the parental haplotypes and the proband’s haplotype. Fetal haplotype was then inferred combined with the parental haplotypes and the proband’s haplotype. The presence of haplotypes linked to both the maternal and paternal mutant alleles indicated affected fetuses. The fetal genotypes were further validated by invasive prenatal diagnosis in a blinded fashion. Results This technique has been successfully applied in twenty-one cases. Six fetuses were diagnosed as patients carrying both of the mutated haplotypes inherited from their parents. Eleven fetuses were carriers of one heterozygous PAH variants, six of which were paternal and five of which were maternal. Four fetuses were absence of pathogenic alleles. All results were consistent with the prenatal diagnosis through amniotic fluid. Conclusions The results showed that our new technique applied to the genotyping of fetuses with high risk for PKU achieves an accurate detection at an early stage of pregnancy with low fetal fraction in cell free DNA.
Background Whole-exome sequencing (WES) is an effective method in the prenatal setting for identification of the underlying genetic etiology of fetal ultrasound abnormalities. To investigate the diagnostic value of WES in fetuses with ultrasound abnormalities that resulted in fetal demise or pregnancy termination. Methods 61 deceased fetuses with ultrasound abnormalities and normal copy number variation Sequencing were retrospectively collected. Proband-only or trio-WES were performed on the products of conception. Result Collectively, 28 cases were positive with 39 variants (10 pathogenic, 22 likely pathogenic and 7 variants of uncertain significance) of 18 genes, and the overall diagnostic rate was 45.9% (28/61), of which 39.2% (11/28) were de novo variants. In addition, 21 variants in 11 genes among the positive cases had not been previously reported. The diagnostic yield for definitive findings for trio analysis was 55.9% (19/34) compared to 33.3% (9/27) for singletons. The most common ultrasound abnormalities were skeletal system abnormalities 39.2% (11/28), followed by multiple system abnormalities (17.9%, 5/28) and genitourinary abnormalities (17.9%, 5/28). Conclusion Our results support the use of WES to identify genetic etiologies of ultrasound abnormalities and improve understanding of pathogenic variants. The identification of disease-related variants provided information for subsequent genetic counseling of recurrence risk and management of subsequent pregnancies.
Background: Whole-exome sequencing (WES) is an effective method in the prenatal setting for identification of the underlying genetic etiology of fetal ultrasound abnormalities. To investigate the diagnostic value of WES in fetuses with ultrasound abnormalities that resulted in fetal demise or pregnancy termination. Methods: 61 deceased fetuses with ultrasound abnormalities and normal copy number variation Sequencing (CNV-seq) were retrospectively collected. Proband-only or trio-WES were performed on the products of conception. Result: Collectively, 28 cases were positive with 39 variants (10 pathogenic, 22 likely pathogenic and 7 variants of uncertain significance) of 18 genes, and the overall diagnostic rate was 45.9% (28/61), of which 39.2% (11/28) were de novo variants. In addition, 21 variants in 11 genes among the positive cases had not been previously reported. The diagnostic yield for definitive findings for trio analysis was 55.9% (19/34) compared to 33.3% (9/27) for singletons. The most common ultrasound abnormalities were skeletal system abnormalities 39.2% (11/28), followed by multiple system abnormalities (17.9%, 5/28) and genitourinary abnormalities (17.9%, 5/28). Conclusion: Our results support the use of WES to identify genetic etiologies of ultrasound abnormalities and improve understanding of pathogenic variants. The identification of disease-related variants provided information for subsequent genetic counseling of recurrence risk and management of subsequent pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.