Improving wireless communication and artificial intelligence technologies by using Internet of Things (Itoh) paradigm has been contributed in developing a wide range of different applications. However, the exponential growth of smart phones and Internet of Things (IoT) devices in wireless sensor networks (WSNs) is becoming an emerging challenge that adds some limitations on Quality of Service (QoS) requirements. End-to-end latency, energy consumption, and packet loss during transmission are the main QoS requirements that could be affected by increasing the number of IoT applications connected through WSNs. To address these limitations, an effective routing protocol needs to be designed for boosting the performance of WSNs and QoS metrics. In this paper, an optimization approach using Particle Swarm Optimization (PSO) algorithm is proposed to develop a multipath protocol, called a Particle Swarm Optimization Routing Protocol (MPSORP). The MPSORP is used for WSN-based IoT applications with a large volume of traffic loads and unfairness in network flow. For evaluating the developed protocol, an experiment is conducted using NS-2 simulator with different configurations and parameters. Furthermore, the performance of MPSORP is compared with AODV and DSDV routing protocols. The experimental results of this comparison demonstrated that the proposed approach achieves several advantages such as saving energy, low end-to-end delay, high packet delivery ratio, high throughput, and low normalization load.
Brain tumor (BTs) is considered one of the deadly, destructive, and belligerent disease, that shortens the average life span of patients. Patients with misdiagnosed and insufficient medical treatment of BTs have less chance of survival. For tumor analysis, magnetic resonance imaging (MRI) is often utilized. However, due to the vast data produced by MRI, manual segmentation in a reasonable period of time is difficult, which limits the application of standard criteria in clinical practice. So, efficient and automated segmentation techniques are required. The accurate early detection and segmentation of BTs is a difficult and challenging task in biomedical imaging. Automated segmentation is an issue because of the considerable temporal and anatomical variability of brain tumors. Early detection and treatment are therefore essential. To detect brain cancers or tumors, different classical machine learning (ML) algorithms have been utilized. However, the main difficulty with these models is the manually extracted features. This research provides a deep hybrid learning (DeepTumorNetwork) model of binary BTs classification and overcomes the above-mentioned problems. The proposed method hybrid GoogLeNet architecture with a CNN model by eliminating the 5 layers of GoogLeNet and adding 14 layers of the CNN model that extracts features automatically. On the same Kaggle (Br35H) dataset, the proposed model key performance indicator was compared to transfer learning (TL) model (ResNet, VGG-16, SqeezNet, AlexNet, MobileNet V2) and different ML/DL. Furthermore, the proposed approach outperformed based on a key performance indicator (Acc, Recall, Precision, and F1-Score) of BTs classification. Additionally, the proposed methods exhibited high classification performance measures, Accuracy (99.51%), Precision (99%), Recall (98.90%), and F1-Score (98.50%). The proposed approaches show its superiority on recent sibling methods for BTs classification. The proposed method outperformed current methods for BTs classification using MRI images.
Personalized trip recommendation attempts to recommend a sequence of Points of Interest (POIs) to a user. Compared with a single POI recommendation, the POIs sequence recommendation is challenging. There are only a couple of studies focusing on POIs sequence recommendations. It is a challenge to generate a reliable sequence of POIs. The two consecutive POIs should not be similar or from the same category. In developing the sequence of POIs, it is necessary to consider the categories of consecutive POIs. The user with no recorded history is also a challenge to address in trip recommendations. Another problem is that recommending the exact and accurate location makes the users bored. Looking at the same kind of POIs, again and again, is sometimes irritating and tedious. To address these issues in recommendation lies in searching for the sequential, relevant, novel, and unexpected (with high satisfaction) Points of Interest (POIs) to plan a personalized trip. To generate sequential POIs, we will consider POI similarity and category differences among consecutive POIs. We will use serendipity in our trip recommendation. To deal with the challenges of discovering and evaluating user satisfaction, we proposed a Serendipity-Oriented Personalized Trip Recommendation (SOTR). A compelling recommendation algorithm should not just prescribe what we are probably going to appreciate but additionally recommend random yet objective elements to assist with keeping an open window to different worlds and discoveries. We evaluated our algorithm using information acquired from a real-life dataset and user travel histories extracted from a Foursquare dataset. It has been observationally confirmed that serendipity impacts and increases user satisfaction and social goals. Based on that, SOTR recommends a trip with high user satisfaction to maximize user experience. We show that our algorithm outperforms various recommendation methods by satisfying user interests in the trip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.