Priors are important for achieving proper posteriors with physically meaningful covariance structures for Gaussian random fields (GRFs) since the likelihood typically only provides limited information about the covariance structure under in-fill asymptotics. We extend the recent Penalised Complexity prior framework and develop a principled joint prior for the range and the marginal variance of one-dimensional, two-dimensional and three-dimensional Matérn GRFs with fixed smoothness. The prior is weakly informative and penalises complexity by shrinking the range towards infinity and the marginal variance towards zero. We propose guidelines for selecting the hyperparameters, and a simulation study shows that the new prior provides a principled alternative to reference priors that can leverage prior knowledge to achieve shorter credible intervals while maintaining good coverage.We extend the prior to a non-stationary GRF parametrized through local ranges and marginal standard deviations, and introduce a scheme for selecting the hyperparameters based on the coverage of the parameters when fitting simulated stationary data. The approach is applied to a dataset of annual precipitation in southern Norway and the scheme for selecting the hyperparameters leads to concervative estimates of non-stationarity and improved predictive performance over the stationary model.
Coming up with Bayesian models for spatial data is easy, but performing inference with them can be challenging. Writing fast inference code for a complex spatial model with realistically‐sized datasets from scratch is time‐consuming, and if changes are made to the model, there is little guarantee that the code performs well. The key advantages of R‐INLA are the ease with which complex models can be created and modified, without the need to write complex code, and the speed at which inference can be done even for spatial problems with hundreds of thousands of observations. R‐INLA handles latent Gaussian models, where fixed effects, structured and unstructured Gaussian random effects are combined linearly in a linear predictor, and the elements of the linear predictor are observed through one or more likelihoods. The structured random effects can be both standard areal model such as the Besag and the BYM models, and geostatistical models from a subset of the Matérn Gaussian random fields. In this review, we discuss the large success of spatial modeling with R‐INLA and the types of spatial models that can be fitted, we give an overview of recent developments for areal models, and we give an overview of the stochastic partial differential equation (SPDE) approach and some of the ways it can be extended beyond the assumptions of isotropy and separability. In particular, we describe how slight changes to the SPDE approach leads to straight‐forward approaches for nonstationary spatial models and nonseparable space–time models. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Statistical Models > Bayesian Models Data: Types and Structure > Massive Data
Gaussian random fields (GRFs) constitute an important part of spatial modelling, but can be computationally infeasible for general covariance structures. An efficient approach is to specify GRFs via stochastic partial differential equations (SPDEs) and derive Gaussian Markov random field (GMRF) approximations of the solutions. We consider the construction of a class of non-stationary GRFs with varying local anisotropy, where the local anisotropy is introduced by allowing the coefficients in the SPDE to vary with position. This is done by using a form of diffusion equation driven by Gaussian white noise with a spatially varying diffusion matrix. This allows for the introduction of parameters that control the GRF by parametrizing the diffusion matrix. These parameters and the GRF may be considered to be part of a hierarchical model and the parameters estimated in a Bayesian framework. The results show that the use of an SPDE with non-constant coefficients is a promising way of creating non-stationary spatial GMRFs that allow for physical interpretability of the parameters, although there are several remaining challenges that would need to be solved before these models can be put to general practical use.
A stationary spatial model is an idealization and we expect that the true dependence structures of physical phenomena are spatially varying, but how should we handle this non-stationarity in practice? We study the challenges involved in applying a flexible non-stationary model to a dataset of annual precipitation in the conterminous US, where exploratory data analysis shows strong evidence of a non-stationary covariance structure.The aim of this paper is to investigate the modelling pipeline once non-stationarity has been detected in spatial data. We show that there is a real danger of over-fitting the model and that careful modelling is necessary in order to properly account for varying second-order structure. In fact, the example shows that sometimes nonstationary Gaussian random fields are not necessary to model non-stationary spatial data.
Accurate estimates of the under-five mortality rate in a developing world context are a key barometer of the health of a nation. This paper describes a new model to analyze survey data on mortality in this context. We are interested in both spatial and temporal description, that is wishing to estimate under-five mortality rate across regions and years and to investigate the association between the under-five mortality rate and spatially varying covariate surfaces. We illustrate the methodology by producing yearly estimates for subnational areas in Kenya over the period 1980-2014 using data from the Demographic and Health Surveys, which use stratified cluster sampling. We use a binomial likelihood with fixed effects for the urban/rural strata and random effects for the clustering to account for the complex survey design. Smoothing is carried out using Bayesian hierarchical models with continuous spatial and temporally discrete components. A key component of the model is an offset to adjust for bias due to the effects of HIV epidemics. Substantively, there has been a sharp decline in Kenya in the under-five mortality rate in the period 1980-2014, but large variability in estimated subnational rates remains. A priority for future research is understanding this variability. In exploratory work, we examine whether a variety of spatial covariate surfaces can explain the variability in under-five mortality rate. Temperature, precipitation, a measure of malaria infection prevalence, and a measure of nearness to cities were candidates for inclusion in the covariate model, but the interplay between space, time, and covariates is complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.