Self-association of medium-chain alcohols in n-decane solutions has been studied by infrared absorption of the fundamental OH stretching vibration. The alcohols investigated were 1-propanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-butanol, 1-pentanol, and 1-hexanol. Infrared spectra were acquired for varying alcohol molalities, the highest concentration being 0.2 mol/kg. The spectra for each alcohol were collected in a data matrix. The bilinear multicomponent data were successfully resolved into spectra and concentration profiles by a multivariate method. The result indicates that monomers dominate the spectral variance in the low-molality region, while cyclic oligomers dominate in the upper concentration range. It further indicates that minor amounts of open-chain aggregates may be present. The monomer and cyclic tetramer appear to be the dominant species, while the amount of open-chain aggregates was negligible even in the low-molality region. The equilibrium constants for the monomer–tetramer association reactions ( K1–4) were calculated by a least-squares method. The calculated values for the equilibrium constants, based on the molality, range from 138 to 106 for the linear alcohol molecules. The result shows that 1-butanol, 1-pentanol, and 1-hexanol have similar constants, while 1-propanol displays a markedly higher value. The equilibrium constants obtained for 2-methyl-1-propanol and 2-methyl-2-propanol were 77 and 39, respectively. The considerably lower values for the branched alcohol molecules indicate that steric interaction between the chain prevents self-association into larger aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.