Kongsfjorden is a glacial fjord in the Arctic (Svalbard) that is influenced by both Atlantic and Arctic water masses and harbours a mixture of boreal and Arctic flora and fauna. Inputs from large tidal glaciers create steep environmental gradients in sedimentation and salinity along the length of this fjord. The glacial inputs cause reduced biomass and diversity in the benthic community in the inner fjord. Zooplankton suffers direct mortality from the glacial outflow and primary production is reduced because of limited light levels in the turbid, mixed inner waters. The magnitude of the glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground for marine mammals and seabirds. Even though the fjord contains some boreal fauna, the prey consumed by upper trophic levels is mainly Arctic organisms. Marine mammals constitute the largest top‐predator biomass, but seabirds have the largest energy intake and also export nutrients and energy out of the marine environment. Kongsfjorden has received a lot of research attention in the recent past. The current interest in the fjord is primarily based on the fact that Kongsfjorden is particularly suitable as a site for exploring the impacts of possible climate changes, with Atlantic water influx and melting of tidal glaciers both being linked to climate variability. The pelagic ecosystem is likely to be most sensitive to the Atlantic versus Arctic influence, whereas the benthic ecosystem is more affected by long‐term changes in hydrography as well as changes in glacial runoff and sedimentation. Kongsfjorden will be an important Arctic monitoring site over the coming decades and a review of the current knowledge, and a gap analysis, are therefore warranted. Important knowledge gaps include a lack of quantitative data on production, abundance of key prey species, and the role of advection on the biological communities in the fjord.
Food web magnification of persistent organic pollutants (POPs) was determined for the Barents Sea food web using 615N as a continuous variable for assessing trophic levels (TL). The food web investigated comprised zooplankton, ice fauna and fish (poikilotherms, TL 1.7-3.3), and seabirds and seals (homeotherms, TL 3.3-4.2), with zooplankton representing the lowest and glaucous gull the highest trophic level. Concentrations of lipophilic and persistent organochlorines were orders of magnitude higher in homeotherms than in poikilotherms. These compounds had significantly higher rates of increase per trophic level in homeotherms relative to poikilotherms, with the highest food web magnification factors (FWMFs) for cischlordane and p,p'-DDE. Some compounds, such as transnonachlor and HCB, had similar rates of increase throughout the food web, whereas compounds that are more readily eliminated (gamma-HCH) showed no relationship with trophic level. It is preferable to calculate FWMFs with regard to thermal groups, because the different energy requirements and biotransformation abilities between poikilotherms and homeotherms may give different rates of contaminant increase with trophic level. When biomagnification is compared between ecosystems, FWMFs are preferable to single predator-prey biomagnification factors. FWMFs represent a trophic level increase of contaminants that is average for the food chain rather than an increase for a specific predator-prey relationship. The Barents Sea FWMFs were generally comparable to those determined for marine food webs with similar food chain lengths in the Canadian Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.