Excluir la existencia de oscilaciones sostenidas en modelos de la ecología matemática es de vital interés para conocer la dinámica poblacional de especies interactuando. En este trabajo se construyen funciones de Dulac para algunas generalizaciones de modelos usados comúnmente en la ecología matemática. Dicho resultado excluye la existencia de órbitas periódicas para algunos modelos que describen competencia intraespecífica o interespecífica, relaciones de competencia, de depredación y captura de individuos de alguna de las especies.
Understanding why there are multiple equilibrium points when R 0 < 1 has been one of the main motivations to analyze existence of a backward bifurcation in epidemiological models. Existence of multiple endemic states is usually associated to branches of equilibrium points of the models, which could arise from either the disease-free equilibrium point if R 0 = 1 or from an endemic equilibrium point if R 0 > 1. In this work, an SIR model with a density-dependent treatment rate is analyzed. The nature of the point where backward bifurcation emerges is explained in function of the velocity of the per-capita treatment rate. Strategies for the control or eradication of the disease will be proposed in function of the efficiency of the treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.