The initial contact of osteoblasts with implant surfaces is an important event for osseointegration of implants. Osseointegration of Ti6Al4V may be improved by precoating of its surface with collagen type I. In this study, the adhesion of rat calvarial osteoblasts to uncoated and collagen type I-coated titanium alloy was investigated over a period of 24 h. Collagen type I-coating accelerates initial adhesion of osteoblasts in the presence of fetal calf serum. One hour after plating, no differences in the percentage of adherent cells between the surfaces investigated were found. Adhesion of osteoblasts to uncoated surfaces was reduced by the GRGDSP peptide by about 70%, whereas adhesion to collagen type I-coated surfaces remained unaffected by treatment of the cells with the peptide. Cell adhesion to coated materials was reduced by about 80% by anti-integrin beta1 antibody. The integrin beta1 antibody did not influence the adhesion to uncoated titanium alloy. The results suggest that osteoblasts adhere to collagen type I-coated materials via integrin beta1 but not by interacting with RGD peptides, whereas adhesion to uncoated titanium alloy is mediated by RGD sequences but not via integrin beta1. Fibronectin does not seem to be involved in the adhesion of osteoblasts to either coated or uncoated titanium alloy.
Several attempts have been made to improve osseointegration of titanium alloy as an implant material by modification of its surface. In the present study, proliferation, differentiation, and mineralization of osteoblasts on type I collagen-coated Ti6Al4V were investigated. The activity of alkaline phosphatase and the accumulation of calcium by osteoblasts grown on titanium alloy were significantly higher compared to cells grown on polystyrene. Precoating of the implant surface with type I collagen did not extensively affect proliferation, the activity of alkaline phosphatase, collagen synthesis, calcium accumulation, or the mRNA levels for collagen I alpha1, osteopontin, osteocalcin, MMP-2, and TIMP-2. Maximum collagen synthesis by osteoblasts was observed at day 4 of culture independent of the type of implant material. The specific activity of alkaline phosphatase reached its maximum at day 18 of culture. Accumulation of calcium and elevated mRNA levels for osteocalcin were found at day 22. These results indicate that collagen-coating alone is not sufficient to accelerate differentiation of rat calvarial osteoblasts on Ti6Al4V.
Abstract:Responses of osteoblastic cells are influenced by morphology and composition of the extracellular matrix, and this fact has been used to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM). In this study, the effect of the collagen types I and III on adhesion, proliferation, and differentiation was studied, using primary osteoblastic cells from rat calvariae. Differences in alkaline phosphatase activity (ALP) and collagen synthesis were observed between differently composed collagen coatings. An increase in collagen type III resulted in an increase in collagen synthesis and a concomitant decrease in ALP activity and Ca deposition. Initial adhesion mechanism of the cells depended on the substrate (titanium, collagen, fibronectin).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.