Recently, the sphingolipid metabolites ceramide, sphingosine, ceramide 1-P, and sphingosine 1-P have been implicated as second messengers involved in many different cellular functions. Publications on this topic are appearing at a rapidly increasing rate and new developments in this field are also appearing rapidly. It is thus important to summarize the results obtained from many different laboratories and from different fields of research to obtain a clearer picture of the importance of sphingolipid metabolites. This article reviews the studies from the last few years and includes the effects of a variety of extracellular agents on sphingolipid signal transduction pathways in different tissues and cells and on the mechanisms of regulation. Sphingomyelin exists in a number of functionally distinct pools and is composed of distinct molecular species. Sphingomyelin metabolites may be formed by many different pathways. For example, the generation of ceramide from sphingomyelin can be catalyzed by at least five different sphingomyelinases. A large variety of stimuli can induce the generation of ceramide, leading to activation or inhibition of various cellular events such as proliferation, differentiation, apoptosis, and inflammation. The effect of ceramide on these physiological processes is due to its many different downstream targets. It can activate ceramide-activated protein kinases and ceramide-activated protein phosphatases. It also activates or inhibits PKCs, PLD, PLA2, PC-PLC, nitric oxide synthase, and the ERK and SAPK/JNK signaling cascades. Ceramide activates or inhibits transcription factors, modulates calcium homeostasis and interacts with the retinoblastoma protein to regulate cell cycle progression. Most of the work in this field has involved the study of ceramide effects, but the roles of the other three sphingomyelin metabolites is now attracting much attention. The complex interactions between signaling components and ceramide and the controls regulating these interactions are now being identified and are presented in this review.
Background-Atrial fibrillation (AF) is the most common sustained arrhythmia observed in otherwise healthy individuals.Most lone AF cases are nonfamilial, leading to the assumption that a primary genetic origin is unlikely. In this study, we provide data supporting a novel paradigm that atrial tissue-specific genetic defects may be associated with sporadic cases of lone AF. Methods and Results-We sequenced the entire coding region of the connexin 43 (Cx43) gene (GJA1) from atrial tissue and lymphocytes of 10 unrelated subjects with nonfamilial, lone AF who had undergone surgical pulmonary vein isolation. In the atrial tissue of 1 patient, we identified a novel frameshift mutation caused by a single nucleotide deletion (c.932delC) that predicted 36 aberrant amino acids followed by a premature stop codon, leading to truncation of the C-terminal domain of Cx43. The mutation was absent from the lymphocyte DNA of the patient, indicating genetic mosaicism. Protein trafficking studies demonstrated intracellular retention of the mutant protein and a dominantnegative effect on gap junction formation of both wild-type Cx43 and Cx40. Electrophysiological studies revealed no electrical coupling of cells expressing the mutant protein alone and significant reductions in coupling when coexpressed with wild-type connexins. Conclusions-This study reports atrial tissue genetic mosaicism of a novel loss-of-function Cx43 mutation associated with lone AF. These findings implicate somatic genetic defects of Cx43 as a potential cause of AF and support the paradigm that sporadic, nonfamilial cases of lone AF may arise from genetic mosaicism that creates heterogeneous coupling patterns, predisposing the tissue to reentrant arrhythmias. (Circulation. 2010;122:236-244.)
Recent reports suggest that inflammatory cytokines, growth factors, and vasoconstrictor peptides induce sphingomyelinase (SMase) activity. This results in the hydrolysis of sphingomyelin (SM) into ceramide, which is implicated in various cellular functions. Although ceramide regulates phospholipase D (PLD) activity, there is controversy about this relationship. Thus we investigated whether the effect of bradykinin (BK), a proinflammatory factor and vasodilator, was mediated by ceramide signal transduction and by PLD. In rabbit cortical collecting duct (RCCD) cells, BK increased SM levels and decreased ceramide levels in a time-dependent manner. Thus SMase activity was inhibited by BK. Also, the production of ceramide was regulated in a concentration-dependent manner. The BK-B1 antagonist [Lys-des-Arg9,Leu8]BK did not affect ceramide signal transduction but the BK-B2 antagonist (Hoe-140) blocked the effect of BK on SMase, suggesting that the BK-B2 receptor mediates BK-induced inhibition of ceramide generation. Our results show that exogenous SMase significantly hydrolyzed endogenous SM to form ceramide and weakly activated PLD. In contrast, BK induced a significant activation of PLD. However, additive effects of BK and ceramide on PLD activity were not observed. We concluded that in RCCD cells, the BK-induced second messengers ceramide and phosphatidic acid were generated by distinct signal transduction mechanisms, namely the SMase and PLD pathways.
Several contaminants detected in aquatic ecosystems are agonists of peroxisome proliferator-activated receptors (PPARs). Peroxisome proliferator-activated receptors interact with the retinoid X receptor (RXR) to activate the transcription of genes that control a variety of physiological functions. We cloned and sequenced partial cDNA fragments of rainbow trout (Oncorhynchus mykiss) PPARalpha and PPARbeta from rainbow trout (rt) gill-W1 cells, a cell line derived from rainbow trout gills; predicted amino acid identities are 77% and 82% compared with their respective human homologs and 83 to 88% and 91 to 98% identical to fish homologs. A reporter gene assay was developed by transfecting rt-gill-W1 cells with a reporter gene construct containing the peroxisome proliferator response element (PPRE) of the rat liver 3-ketoacyl-CoA thiolase B (TB) gene, which drives luciferase expression. Agonists of both PPARalpha (WY14,643 and gemfibrozil) and PPARbeta (bezafibrate) induced luciferase activity, while rosiglitazone, a PPARgamma agonist, was not effective. The fibrate drug, bezafibrate increased luciferase activity in a dose-dependent manner, but addition of 50 nM 9-cis-retinoic acid to the transfected rt-gill-W1 cell culture maximized the sensitivity of the assay so that bezafibrate could be detected at concentrations as low as 6 nM. Extracts from treated domestic wastewater containing fibrate drugs induced luciferase activity in the transfected gill cells. This in vitro reporter gene assay shows promise as a rapid and sensitive technique for screening environmental samples for PPAR-active substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.