Abstract. The probability distribution of a set of observation is most often defined as a convex combination of probability laws. To highlight this mixture of the laws, MCMC (Monte Carlo Markov Chain) which is an algorithm that generates a stationary Markov chain is often used; laws being considered as normal laws. In this paper, the observations are positive integer, so it is assumed that the mixture law is a Poisson weighted law and Blending laws are dual. The purpose of this work is to determine the dual laws by simple algebraic properties.Résumé. La loi de distribution d'un ensemble d'observation est le plus souvent définie comme une combinaison convexe de plusieurs lois de probabilités. Pour mettre enévidence ce mélange de lois on utilise souvent la méthode MCMC (Monte Carlo par Chaîne de Markov) qui est un algorithme qui génère une chaîne de Markov stationnaire; les loisétant considérées comme des lois normales. Dans le présent papier, les observations sont entières positives; on suppose donc que la loi mélange est une loi de Poisson pondérée et les lois mélangeantes sont duales . L'objet de ce travail est de pouvoir déterminer ces lois duales par des propriétés algébriques simples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.