To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/ additive effect, and activates both intrinsic and extrinsic pathways. Molecular & Cellular
Scoparone is an active ingredient of Yinchenhao (Artemisia annua L.), a well-known Chinese medicinal plant, and has been utilized in prevention and therapy of liver damage. However, the molecular drug targets associated with the pharmacological effects of scoparone are largely unknown. In the present article, we extend the previous research on Yinchenhao through a study of its active ingredient and thus the putative targets of scoparone. We employed two-dimensional gel electrophoresis, and all proteins expressed were identified by MALDI-TOF/TOF MS and database research. Protein-interacting networks and pathways were also mapped and evaluated. The possible protein network associated with scoparone was constructed, and contribution of these proteins to the protective effect of scoparone against the carbon tetrachloride-induced acute liver injury in rats are discussed herein. Hepatoprotective effects of scoparone on liver injury in rats were associated with regulated expression of six proteins which were closely related in our protein-protein interaction network, and appear to be involved in antioxidation and signal transduction, energy production, immunity, metabolism, and chaperoning. These observations collectively provide new insights on the molecular mechanisms of scoparone action against hepatic damage in rats.
Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in diseases. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively interpret network models from large scale interactome data. In this study, we carried out comparative proteomics to construct and identify the proteins networks associated with hepatic injury (HI) which are largely unknown, as a case study. All proteins expressed were separated and identified by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Protein-interacting networks and pathways were mapped using STRING analysis program. We have performed for the first time a comprehensive profiling of changes in protein expression of HI rats, to uncover the networks altered by treated with CCl(4). Identification of fifteen spots (seven over-expressed and eight under-expressed) were established by MALDI-TOF/TOF MS. These proteins were subjected to functional pathway analysis using STRING software for better understanding of the biological context of the identified proteins. It suggested that modulation of multiple vital physiological pathways including DNA repair process, cell apoptosis, oxidation reduction, signal transduction, metabolic process, intracellular signaling cascade, regulation of biological processes, cell communication, regulation of cellular process, and molecular transport. In summary, the present study provides the first protein-interacting network maps and novel insights into the biological responses and potential pathways of HI. The generation of protein interaction networks clearly enhances the interpretation of proteomic data, particularly in respect of understanding molecular mechanisms of panel protein biomarkers.
Background: Xiaochaihu capsule is composed of seven traditional Chinese medicines. The pharmacopoeia only focuses on the quantitative detection of baicalin, which cannot fully reflect the quality of the preparation. Some medium polar components were used to establish the fingerprint of Xiaochaihu capsule, but there was no report on the strong polar components. Methods: A high performance liquid chromatography-corona charged aerosol detection technology was used to establish a fingerprint analysis method for Xiaochaihu capsules following an analytical quality by design approach. Definitive screening designed experiments were used to optimize the method parameters. A stepwise regression method was used to build quantitative models. The method operable design region was calculated using the experimental error simulation method. Plackett–Burman designed experiments were carried out to test robustness. Results: The contents of four components were simultaneously determined. There were seven common peaks in the fingerprint. The common peak area accounted for 91.72%. Both fingerprint and quantitative analysis methods were validated as applicable in the methodology study. The quantitative fingerprint analysis method for sugar components can fill the gap in the detection of strong polar components in the existing methods. It provides a new technology for the comprehensive overall evaluation of Xiaochaihu capsule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.