Ensemble trees are a popular machine learning model which often yields high prediction performance when analysing structured data. Although individual small decision trees are deemed explainable by nature, an ensemble of large trees is often difficult to understand. In this work, we propose an approach called optimised explanation (OptExplain) that faithfully extracts global explanations of ensemble trees using a combination of logical reasoning, sampling and optimisation. Building on top of this, we propose a method called the profile of equivalent classes (ProClass), which uses MAX-SAT to simplify the explanation even further 1 . Our experimental study on several datasets shows that our approach can provide high-quality explanations to large ensemble trees models, and it betters recent top-performers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.