Abstract-This paper provides a comparative study of several enhanced versions of the fuzzy c-means clustering algorithm in an application of histogram-based image color reduction. A common preprocessing is performed before clustering, consisting of a preliminary color quantization, histogram extraction and selection of frequently occurring colors of the image. These selected colors will be clustered by tested c-means algorithms. Clustering is followed by another common step, which creates the output image. Besides conventional hard (HCM) and fuzzy c-means (FCM) clustering, the so-called generalized improved partition FCM algorithm, and several versions of the suppressed FCM (s-FCM) in its conventional and generalized form, are included in this study. Accuracy is measured as the average color difference between pixels of the input and output image, while efficiency is mostly characterized by the total runtime of the performed color reduction. Numerical evaluation found all enhanced FCM algorithms more accurate, and four out of seven enhanced algorithms faster than FCM. All tested algorithms can create reduced color images of acceptable quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.