In an interconnected multi-area power system, widearea measurement based damping controllers are used to damp out inter-area oscillations, which jeopardize grid stability and constrain the power flows below to their transmission capacity. The effect of wide-area damping control (WADC) significantly depends on both power and cyber systems. At the cyber system layer, an adversary can inflict the WADC process by compromising either measurement signals, control signals or both. Stealthy and coordinated cyber-attacks may bypass the conventional cybersecurity measures to disrupt the seamless operation of WADC. This paper proposes an anomaly detection (AD) algorithm using supervised Machine Learning and a modelbased logic for mitigation. The proposed AD algorithm considers measurement signals (input of WADC) and control signals (output of WADC) as input to evaluate the type of activity such as normal, perturbation (small or large signal faults), attack and perturbation-and-attack. Upon anomaly detection, the mitigation module tunes the WADC signal and sets the control status mode as either wide-area mode or local mode. The proposed anomaly detection and mitigation (ADM) module works inline with the WADC at the control center for attack detection on both measurement and control signals and eliminates the need for ADMs at the geographically distributed actuators. We consider coordinated and primitive data-integrity attack vectors such as pulse, ramp, relay-trip and replay attacks. The performance of the proposed ADM algorithms was evaluated under these attack vector scenarios on a testbed environment for 2-area 4-machine power system. The ADM module shows effective performance with 96.5% accuracy to detect anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.