We consider jointly modelling a finite collection of quantiles over time. Formal Bayesian inference on quantiles is challenging since we need access to both the quantile function and the likelihood. We propose a flexible Bayesian time-varying transformation model, which allows the likelihood and the quantile function to be directly calculated. We derive conditions for stationarity, discuss suitable priors and describe a Markov chain Monte Carlo algorithm for inference. We illustrate the usefulness of the model for estimation and forecasting on stock, index, and commodity returns.
We consider jointly modelling a finite collection of quantiles over time. Formal Bayesian inference on quantiles is challenging since we need access to both the quantile function and the likelihood. We propose a flexible Bayesian time-varying transformation model, which allows the likelihood and the quantile function to be directly calculated. We derive conditions for stationarity, discuss suitable priors and describe a Markov chain Monte Carlo algorithm for inference. We illustrate the usefulness of the model for estimation and forecasting on stock, index, and commodity returns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.