The deposition of L L-amyloid peptide (AL L), the hyperphosphorylation of tau protein and the death of neurons in certain brain regions are characteristic features of Alzheimer's disease. It has been proposed that the accumulation of aggregates of AL L is the trigger of neurodegeneration in this disease. In support of this view, several studies have demonstrated that the treatment of cultured neurons with AL L leads to the hyperphosphorylation of tau protein and neuronal cell death. Here we report that lithium prevents the enhanced phosphorylation of tau protein at the sites recognized by antibodies Tau-1 and PHF-1 which occurs when cultured rat cortical neurons are incubated with AL L. Interestingly, lithium also significantly protects cultured neurons from AL L-induced cell death. These results raise the possibility of using chronic lithium treatment for the therapy of Alzheimer's disease.z 1999 Federation of European Biochemical Societies.
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that remains latent in host neurons. Viral DNA replication is a highly structured process in which the redistribution of nuclear proteins plays an important role. Although tau is most widely known as a microtubule-associated protein found in a hyperphosphorylated state in the brains of patients with Alzheimer's disease (AD), this protein has also been detected at other sites such as the nucleolus. Here, we establish that HSV-1 infection gives rise to an increase in tau phosphorylation and that hyperphosphorylated tau accumulates in the nucleus, forming defined structures in HSV-1-infected neuronal cells reminiscent of the common sites of viral DNA replication. When tau expression in human neuroblastoma cells was specifically inhibited using an adenoviral vector expressing a short hairpin RNA to tau, viral DNA replication was not affected, indicating that tau is not required for HSV-1 growth in neuronal cells. Given that HSV-1 is considered a risk factor for AD, our results suggest a new way in which to understand the relationships between HSV-1 infection and the pathogenic mechanisms leading to AD.
Alzheimer's disease is a neurodegenerative disorder characterized by the accumulation of the beta-amyloid peptide and the hyperphosphorylation of the tau protein, among other features. The most widely accepted hypothesis on the etiopathogenesis of this disease proposes that the aggregates of the beta-amyloid peptide are the main triggers of tau hyperphosphorylation and the subsequent degeneration of affected neurons. In support of this view, fibrillar aggregates of synthetic beta-amyloid peptide induce tau hyperphosphorylation and cell death in cultured neurons. We have previously reported that lithium inhibits tau hyperphosphorylation and also significantly protects cultured neurons from cell death triggered by beta-amyloid peptide. As lithium is a relatively specific inhibitor of glycogen synthase kinase-3 (in comparison with other protein kinases), and other studies also point to a relevant role of this enzyme, we favor the view that glycogen synthase kinase-3 is a crucial element in the pathogenesis of Alzheimer's disease. In our opinion, the possibility of using lithium, or other inhibitors of glycogen synthase kinase-3, in experimental trials aimed to ameliorate neurodegeneration in Alzheimer's disease should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.