Acinetobacter baumannii
is an opportunistic bacterium that causes hospital-acquired infections with a high mortality and morbidity, since there are strains resistant to virtually any kind of antibiotic. The chase to find novel strategies to fight against this microbe can be favoured by knowledge of the complete catalogue of genes of the species, and their relationship with the specific characteristics of different isolates. In this work, we performed a genomics analysis of almost 2500 strains. Two different groups of genomes were found based on the number of shared genes. One of these groups rarely has plasmids, and bears clustered regularly interspaced short palindromic repeat (CRISPR) sequences, in addition to CRISPR-associated genes (cas genes) or restriction-modification system genes. This fact strongly supports the lack of plasmids. Furthermore, the scarce plasmids in this group also bear CRISPR sequences, and specifically contain genes involved in prokaryotic toxin–antitoxin systems that could either act as the still little known CRISPR type IV system or be the precursors of other novel CRISPR/Cas systems. In addition, a limited set of strains present a new cas9-like gene, which may complement the other cas genes in inhibiting the entrance of new plasmids into the bacteria. Finally, this group has exclusive genes involved in biofilm formation, which would connect CRISPR systems to the biogenesis of these bacterial resistance structures.
Enterobacteriaceae cause different types of community- and hospital-acquired infections. Moreover, the spread of multidrug-resistant Enterobacteriaceae is a public health problem and the World Health Organization pointed them among the pathogens in which the search of new antibiotics is critical. The objective of this study was to analyze the in vitro activity of pentamidine alone and in combination with gentamicin, tobramycin, amikacin, tigecycline, rifampicin, or doripenem against eight clinical strains of carbapenemase-producing and/or colistin-resistant Enterobacteriaceae: five carbapenemase-producing Klebsiella pneumoniae, one carbapenemase-producing Escherichia coli, and two colistin-resistant Enterobacter cloacae. MIC and MBC were determined following standard protocols. MIC results were interpreted for all the antibiotics according to the EUCAST breakpoints but for rifampicin in which the French FSM breakpoint was used. Bactericidal and synergistic activity of pentamidine alone and in combination with antibiotics at concentrations of 1xMIC was measured by time-kill curves. For one selected strain, K. pneumoniae OXA-48/CTX-M-15 time-kill curves were performed also at 1/2xMIC of pentamidine. All studies were performed in triplicate. Pentamidine MIC range was 200–800 μg/mL. The 50, 12.5, 62.5, 87.5, and 62.5% of the strains were susceptible to gentamicin, tobramycin, amikacin, tigecycline, and doripenem, respectively. Only the two E. cloacae strains were susceptible to rifampicin. Pentamidine alone at 1xMIC showed bactericidal activity against all strains, except for the E. cloacae 32 strain. The bactericidal activity of pentamidine alone was also observed in combination. The combinations of pentamidine were synergistic against E. cloacae 32 with amikacin and tobramycin at 24 h and with tigecycline at 8 h. Pentamidine plus rifampicin was the combination that showed synergistic activity against more strains (five out of eight). Pentamidine plus doripenem did not show synergy against any strain. At 1/2xMIC, pentamidine was synergistic with all the studied combinations against the K. pneumoniae OXA-48/CTX-M-15 strain. In summary, pentamidine alone and in combination shows in vitro activity against carbapenemase-producing and/or colistin-resistant Enterobacteriaceae. Pentamidine appears to be a promising option to treat infections caused by these pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.