Recent findings indicate that the expression of the beta-catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is depressed in liver, kidney and colon carcinomas, providing further a bioenergetic signature of cancer that is associated with patient survival. In the present study, we performed an analysis of mitochondrial and glycolytic protein markers in breast, gastric and prostate adenocarcinomas, and in squamous oesophageal and lung carcinomas. The expression of mitochondrial and glycolytic markers varied significantly in these carcinomas, when compared with paired normal tissues, with the exception of prostate cancer. Overall, the relative expression of beta-F1-ATPase was significantly reduced in breast and gastric adenocarcinomas, as well as in squamous oesophageal and lung carcinomas, strongly suggesting that alteration of the bioenergetic function of mitochondria is a hallmark of these types of cancer.
Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany cellular mitosis, and illustrate the following key points of the biogenesis of mitochondria during progression of liver cells through the cycle: (i) the replication of nuclear and mitochondrial genomes is synchronized during cellular proliferation, (ii) the accretion of OXPHOS proteins is asynchronously regulated during proliferation being the synthesis of β-F1-ATPase and Hsp60 carried out also at G2/M and, (iii) the biosynthesis of cardiolipin is achieved during the S phase, although full development of the mitochondrial membrane potential (ΔΨm) is attained at G2/M. Furthermore, we demonstrate using reporter constructs that the mechanism regulating the accretion of β-F1-ATPase during cellular proliferation is controlled at the level of mRNA translation by the 3′UTR of the transcript. The 3′UTR-driven synthesis of the protein at G2/M is essential for conferring to the daughter cells the original phenotype of the parental cell. Our findings suggest that alterations on this process may promote deregulated β-F1-ATPase expression in human cancer.
There is a large body of clinical data documenting that most human carcinomas contain reduced levels of the catalytic subunit of the mitochondrial H+-ATP synthase. In colon and lung cancer this alteration correlates with a poor patient prognosis. Furthermore, recent findings in colon cancer cells indicate that downregulation of the H+-ATP synthase is linked to the resistance of the cells to chemotherapy. However, the mechanism by which the H+-ATP synthase participates in cancer progression is unknown. In this work, we show that inhibitors of the H+-ATP synthase delay staurosporine (STS)-induced cell death in liver cells that are dependent on oxidative phosphorylation for energy provision whereas it has no effect on glycolytic cells. Efficient execution of cell death requires the generation of reactive oxygen species (ROS) controlled by the activity of the H+-ATP synthase in a process that is concurrent with the rapid disorganization of the cellular mitochondrial network. The generation of ROS after STS treatment is highly dependent on the mitochondrial membrane potential and most likely caused by reverse electron flow to Complex I. The generated ROS promote the carbonylation and covalent modification of cellular and mitochondrial proteins. Inhibition of the activity of the H+-ATP synthase blunted ROS production prevented the oxidation of cellular proteins and the modification of mitochondrial proteins delaying the release of cytochrome c and the execution of cell death. The results in this work establish the downregulation of the H+-ATP synthase, and thus of oxidative phosphorylation, as part of the molecular strategy adapted by cancer cells to avoid ROS-mediated cell death. Furthermore, the results provide a mechanistic explanation to understand chemotherapeutic resistance of cancer cells that rely on glycolysis as the main energy provision pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.