A unique extra-suprachiasmatic nucleus (SCN) oscillator, operating independently of the light-entrainable oscillator, has been hypothesized to generate feeding and drug-related rhythms. To test the validity of this hypothesis, sham-lesioned (Sham) and SCN-lesioned (SCNx) rats were housed in constant dim-red illumination (LL(red)) and received a daily cocaine injection every 24 h for 7 d (Experiment 1). In a second experiment, rats underwent 3-h daily restricted feeding (RF) followed 12 d later by the addition of daily cocaine injections given every 25 h in combination with RF until the two schedules were in antiphase. In both experiments, body temperature and total activity were monitored continuously. Results from Experiment 1 revealed that cocaine, but not saline, injections produced anticipatory increases in temperature and activity in SCNx and Sham rats. Following withdrawal from cocaine, free-running temperature rhythms persisted for 2-10 d in SCNx rats. In Experiment 2, robust anticipatory increases in temperature and activity were associated with RF and cocaine injections; however, the feeding periodicity (23.9 h) predominated over the cocaine periodicity. During drug withdrawal, the authors observed two free-running rhythms of temperature and activity that persisted for >14 d in both Sham and SCNx rats. The periods of the free-running rhythms were similar to the feeding entrainment (period = 23.7 and 24.0 h, respectively) and drug entrainment (period = 25.7 and 26.1 h, respectively). Also during withdrawal, the normally close correlation between activity and temperature was greatly disrupted in Sham and SCNx rats. Taken together, these results do not support the existence of a single oscillator mediating the rewarding properties of both food and cocaine. Rather, they suggest that these two highly rewarding behaviors can be temporally isolated, especially during drug withdrawal. Under stable dual-entrainment conditions, food reward appears to exhibit a slightly greater circadian influence than drug reward. The ability to generate free-running temperature rhythms of different frequencies following combined food and drug exposures could reflect a state of internal desynchrony that may contribute to the addiction process and drug relapse.
The rewarding influence of drugs of abuse varies with time of day and appears to involve interactions between the circadian and the mesocorticolimbic dopamine systems. The circadian system is also intimately involved in measuring daylength. Thus, the present study examined the impact of changing daylength (photoperiod) on cocaine-seeking behaviors. Male Sprague Dawley rats were trained and tested on a 12L:12D light:dark schedule for cocaine-induced reinstatement of conditioned place preference (CPP) at three times of day (Zeitgeber time (ZT): 4, 12, and 20) to determine a preference score. Rats were then shifted to either shorter (6L:18D) or longer (18L:6D) photoperiods and then to constant conditions, re-tested for cocaine-induced reinstatement under each different condition, and then returned to their original photoperiod (12L:12D) and tested once more. Rats exhibited a circadian profile of preference score in constant darkness with a peak at 12h after lights-off. At both ZT4 and ZT20, but not at ZT12, shorter photoperiods profoundly suppressed cocaine reinstatement, which did not recover even after switching back to 12L:12D. In contrast, longer photoperiods did not alter reinstatement. Separate studies showed that the suppression of cocaine reinstatement was not due to repeated testing. In an additional experiment, we examined the photoperiodic regulation of tyrosine hydroxylase (TH) and dopamine transporter (DAT) proteins in drug-naive rats. These results revealed photoperiodic modulation of proteins in the prefrontal cortex and dorsal striatum, but not in the nucleus accumbens or ventral tegmental area. Together, these findings add further support to the circadian genesis of cocaine-seeking behaviors and demonstrate that drug-induced reinstatement is modulated by photoperiod. Furthermore, the results suggest that photoperiod partly contributes to the seasonal expression of certain drug-related behaviors in humans living at different latitudes and thus our findings may have implications for novel targeting of circadian rhythms in the treatment of addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.