Sixteen faba bean genotypes were evaluated in 13 environments in Ethiopia during the main cropping season for three years (2009)(2010)(2011). The objectives of the study were to evaluate the yield stability of the genotypes and the relative importance of different stability parameters for improving selection in faba bean. The study was conducted using a randomized complete block design with four replications. G × E interaction and yield stability were estimated using 17 different stability parameters. Pooled analysis of variance for grain yield showed that the main effects of both genotypes and environments, and the interaction effect, were highly significant (P ≤ 0.001) and (P ≤ 0.01), respectively. The environment main effect accounted for 89.27% of the total yield variation, whereas genotype and G × E interaction effects accounted for 2.12% and 3.31%, respectively.Genotypic superiority index (P i ) and FT3 were found to be very informative for selecting both high-yielding and stable faba bean genotypes. Twelve of the 17 stability parameters,, W i , σ i 2 , EV, P 59 , and ASV, were influenced simultaneously by both yield and stability. They should accordingly be used as complementary criteria to select genotypes with high yield and stability. Although none of the varieties showed consistently superior performance across all environments, the genotype EK 01024-1-2 ranked in the top third of the test entries in 61.5% of the test environments and was identified as the most stable genotype, with type I stability. EK 01024-1-2 also showed a 17.0% seed size advantage over the standard varieties and was released as a new variety in 2013 for wide production and named "Gora". Different stability parameters explained genotypic performance differently, irrespective of yield performance. It was accordingly concluded that assessment of G × E interaction and yield stability should not be based on a single or a few stability parameters but rather on a combination of stability parameters.
Storage insect pests cause significant losses of food legumes particularly in the Tropics and the Sub-tropics. The most important species of storage insect pests of food legumes include Callosobruchus chinensis, C. maculatus, C. analis, Acanthoscelides obtectus, Bruchus incarnatus, B. rufimanus, B. dentipes, B. quinqueguttatus, B. emarginatus, B. ervi, B. lentis and B. pisorum. Effective post-harvest insect pest control measures should constitute part of the overall crop husbandry practices for preserving the quality of produce. Storage insect pests are commonly controlled using chemical insecticides which, however, bear many drawbacks related to high cost, environmental pollution and food safety risks. Breeding legume crops to improve their resistance against storage insect pests, although having technical limitations, is the best way of overcoming these disadvantages in an environment-friendly manner. In this paper, we present the findings of our extensive reviews on the potential of breeding resistant varieties of food OPEN ACCESS Sustainability 2011, 3 1400 legumes against storage insect pests along with the major technical limitations one would likely encounter and the prospective ways of tackling them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.