The cerebellar network is renowned for its regular architecture that has inspired foundational computational theories. However, the relationship between circuit structure, function and dynamics remains elusive. To tackle the issue, we developed an advanced computational modeling framework that allows us to reconstruct and simulate the structure and function of the mouse cerebellar cortex using morphologically realistic multi-compartmental neuron models. The cerebellar connectome is generated through appropriate connection rules, unifying a collection of scattered experimental data into a coherent construct and providing a new model-based ground-truth about circuit organization. Naturalistic background and sensory-burst stimulation are used for functional validation against recordings in vivo, monitoring the impact of cellular mechanisms on signal propagation, inhibitory control, and long-term synaptic plasticity. Our simulations show how mossy fibers entrain the local neuronal microcircuit, boosting the formation of columns of activity travelling from the granular to the molecular layer providing a new resource for the investigation of local microcircuit computation and of the neural correlates of behavior.
Modelling brain networks with complex configuration and cellular properties requires a set of neuroinformatic tools and an organized staged workflow. We have therefore developed the Brain Scaffold Builder (BSB), a new modeling framework embedding multiple strategies for cell placement and connectivity and a flexible management of cellular and network mechanisms. With BSB, for the first time, the mouse cerebellar cortex was reconstructed and simulated at cellular resolution, using morphologically realistic multi-compartmental single-neuron models. Embedded connection rules allowed BSB to generate the cerebellar connectome, unifying a collection of scattered experimental data into a coherent construct. Naturalistic background and sensory-burst stimulation were used for functional validation against recordings in vivo, monitoring the impact of subcellular mechanisms on signal propagation and spatio-temporal processing and providing a new ground-truth about circuit organization for the prediction of neural dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.