Neural crest cells (NCCs) are highly multipotent stem cells. A long-standing controversy exists over the mechanism of NCC fate specification, specifically regarding the presence and potency of intermediate progenitors. The direct fate restriction (DFR) model, based on early in vivo clonal studies, hypothesised that intermediates are absent and that migrating cells maintain full multipotency. However, most authors favour progressive fate restriction (PFR) models, with fully multipotent early NCCs (ENCCs) transitioning to partially-restricted intermediates before committing to individual fates. Here, single cell transcriptional profiling of zebrafish pigment cell development leads to us proposing a Cyclical Fate Restriction mechanism of NCC development that reconciles the DFR and PFR models. Our clustering of single NCC Nanostring transcriptional profiles identifies only broadly multipotent intermediate states between ENCCs and differentiated melanocytes and iridophores. Leukocyte tyrosine kinase (Ltk) marks the multipotent progenitor and iridophores, consistent with biphasic ltk expression. Ltk inhibitor and constitutive activation studies support expression at an early multipotent stage, whilst lineage-tracing of ltk-expressing cells reveals their multipotency extends beyond pigment cell-types to neural fates. We conclude that pigment cell development does not involve a conventional PFR mechanism, but instead occurs directly and more dynamically from a broadly multipotent intermediate state.
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Rotifers have been studied in the laboratory and field for over 100 years in investigations of microevolution, ecological dynamics, and ecotoxicology. In recent years, rotifers have emerged as a model system for modern studies of the molecular mechanisms of genome evolution, development, DNA repair, aging, life history strategy, and desiccation tolerance. However, a lack of gene editing tools and transgenic strains has limited the ability to link genotype to phenotype and dissect molecular mechanisms. To facilitate genetic manipulation and the creation of reporter lines in rotifers, we developed a protocol for highly efficient, transgenerational, CRISPR-mediated gene editing in the monogonont rotifer Brachionus manjavacas by microinjection of Cas9 protein and synthetic single-guide RNA into the vitellaria of young amictic (asexual) females. To demonstrate the efficacy of the method, we created knockout mutants of the developmental gene vasa and the DNA mismatch repair gene mlh3. More than half of mothers survived injection and produced offspring. Genotyping these offspring and successive generations revealed that most carried at least 1 CRISPR-induced mutation, with many apparently mutated at both alleles. In addition, we achieved precise CRISPR-mediated knock-in of a stop codon cassette in the mlh3 locus, with half of injected mothers producing F2 offspring with an insertion of the cassette. Thus, this protocol produces knockout and knock-in CRISPR/Cas9 editing with high efficiency, to further advance rotifers as a model system for biological discovery.
Rotifers have been studied in the laboratory and field for over 100 years and are an emerging modern model system for investigation of the molecular mechanisms of genome evolution, development, DNA repair, aging, life history strategy, and desiccation tolerance, and have a long been used in studies of microevolution, ecological dynamics, and ecotoxicology. However, a lack of gene editing tools and transgenic strains has limited the ability to link genotype to phenotype and dissect molecular mechanisms. To facilitate genetic manipulation and the creation of reporter lines, we developed a protocol for highly efficient, transgenerational, CRISPR-mediated gene editing in the monogonont rotifer Brachionus manjavacas by microinjection of Cas9 protein and synthetic single guide RNA into the vitellaria of young amictic (asexual) females. To demonstrate the efficacy of the method, we created knockout mutants of the developmental gene vasa and the DNA mismatch repair gene mlh3. More than half of mothers survived injection and produced offspring. Genotyping these offspring and successive generations revealed that most carried at least one CRISPR-induced mutation, with many apparently mutated at both alleles or mosaic. In addition, we achieved precise CRISPR-mediated knockin of a stop codon cassette in the mlh3 locus, with half of injected mothers producing 33% or more F2 offspring with an insertion of the cassette. These results demonstrate the efficacy of the CRISPR/Cas9 system in rotifers to provide insight into the function of specific genes and further advance rotifers as a model system for biological discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.