Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.
The complete genome sequences with their annotations are a considerable resource in biology, particularly in understanding the global structure of the genetic material at the molecular level. The reason why some eukaryotic genomes contain large quantities of apparently unnecessary DNA, namely pseudogenes, while others seem to invest in more efficient thinning processes or are equipped with protection systems against parasitic elements still remains a mystery. Several genome-wide surveys have been undertaken to identify pseudogenes in the completely sequenced genome, bringing to light some differences both in their amount and distribution. Since pseudogenes are important resources in evolutionary and comparative genomics - as 'molecular fossils' - in this paper, a survey on the origins, features, abundance and localisation of the different pseudogenes is reported. As an example of genes producing processed pseudogenes, some experimental data obtained in the authors' laboratories from the study of a nuclear gene coding for the mitochondrial transcription factor A (mtTFA), a key regulator of mitochondrial biogenesis, are also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.