Myeloproliferative syndromes (MPS) are a heterogeneous subclass of nonlymphoid hematopoietic neoplasms which are considered to be intrinsic to hematopoietic cells. The causes of MPS are largely unknown. Here, we demonstrate that mice deficient for retinoic acid receptor gamma (RARgamma), develop MPS induced solely by the RARgamma-deficient microenvironment. RARgamma(-/-) mice had significantly increased granulocyte/macrophage progenitors and granulocytes in bone marrow (BM), peripheral blood, and spleen. The MPS phenotype continued for the lifespan of the mice and was more pronounced in older mice. Unexpectedly, transplant studies revealed this disease was not intrinsic to the hematopoietic cells. BM from wild-type mice transplanted into mice with an RARgamma(-/-) microenvironment rapidly developed the MPS, which was partially caused by significantly elevated TNFalpha in RARgamma(-/-) mice. These data show that loss of RARgamma results in a nonhematopoietic cell-intrinsic MPS, revealing the capability of the microenvironment to be the sole cause of hematopoietic disorders.
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation.
Hemopoietic stem cells (HSCs) reside within a specified area of the bone marrow (BM) cavity called a "niche" that modulates HSC quiescence, proliferation, differentiation, and migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.