BackgroundPeroxisome proliferator-activated receptors (PPARs) are a family of three (PPARα, -β/δ, and -γ) nuclear receptors. In particular, PPARα is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARα mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart.Methodology/Principal FindingsExpression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARα. The CYP2J2 products 8,9- and 11-12-EET also activate PPARα. In vitro, PPARα activation by its selective ligand induces the PPARα target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4.Conclusions/SignificanceOur results establish that CYP2J2 produces PPARα ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events.
In healthy individuals, peripheral insulin resistance evoked by dietary saturated lipid can be accompanied by increased insulin secretion such that glucose tolerance is maintained. Substitution of long-chain omega-3 fatty acids for a small percentage of dietary saturated fat prevents insulin resistance in response to high-saturated fat feeding. We substituted a small amount (7%) of dietary lipid with long-chain omega-3 fatty acids during 4 wk of high-saturated fat feeding to investigate the relationship between amelioration of insulin resistance and glucose-stimulated insulin secretion (GSIS). We demonstrate that, despite dietary delivery of saturated fat throughout, this manipulation prevents high-saturated fat feeding-induced insulin resistance with respect to peripheral glucose disposal and reverses insulin hypersecretion in response to glucose in vivo. Effects of long-chain omega-3 fatty acid enrichment to lower GSIS were also observed in perifused islets suggesting a direct effect on islet function. However, long-chain omega-3 fatty acid enrichment led to hepatic insulin resistance with respect to suppression of glucose output and impaired glucose tolerance in vivo. Our data demonstrate that the insulin response to glucose is suppressed to a greater extent than whole-body insulin sensitivity is enhanced by enrichment of a high-saturated fat diet with long-chain omega-3 fatty acids. Additionally, reduced GSIS despite glucose intolerance suggests that either long-chain omega-3 fatty acids directly impair the beta-cell response to saturated fat such that insulin secretion cannot be augmented to normalize glucose tolerance or beta-cell compensatory hypersecretion represents a response to insulin resistance at the level of peripheral glucose disposal but not endogenous glucose production.
We investigated the effects of acute (24-h) peroxisome proliferator-activated receptor (PPAR)alpha activation by WY14,643 (pirinixic acid) treatment on glucose-stimulated insulin secretion (GSIS) during pregnancy, in the rat, in relation to insulin sensitivity. GSIS after iv glucose challenge (500 mg/kg) was increased at d 15 of pregnancy but was attenuated by WY14,643 treatment in vivo, with decreases in acute insulin response (51%; P < 0.001) and total suprabasal 30-min area under the insulin curve (deltaI) (55%; P < 0.001). GSIS was unaffected by WY14,643 treatment in unmated rats. Islet perifusions were employed to identify persistent effects of PPARalpha activation. GSIS was enhanced, and the glucose threshold was reduced in perifused islets from pregnant rats, but WY14,643 treatment failed to reverse these effects. WY14,643 treatment of 15-d-pregnant rats significantly lowered (by 63%; P < 0.01) the insulin resistance index [total suprabasal 30-min area under insulin curve x suprabasal 30-min area under glucose curve (deltaI x deltaG)]. A strong positive linear relationship (r = 0.92) between acute insulin response and deltaI x deltaG was evident between groups. Our studies show that acute PPARalpha activation reverses the augmented GSIS evoked by pregnancy in vivo, whereas the isolated islets retain pregnancy-induced enhancement of beta-cell glucose sensing and responsiveness. Normalization of maternal GSIS to that found in the nonpregnant state is observed in association with alleviation of maternal insulin resistance.
In rats fed a high-saturated fat diet, replacement of a small percentage of total fatty acids with long-chain -3 fatty acids from fish oil for the duration of high-fat feeding prevents the development of insulin resistance. We investigated the effect of acute (24-h) modulation of dietary fat composition on glucose-stimulated insulin secretion (GSIS) in rats made insulin resistant by highsaturated fat feeding for 4 weeks. Insulin secretion after an intravenous glucose challenge was greatly increased by high-saturated fat feeding. Glucose tolerance was minimally perturbed, demonstrating insulin hypersecretion compensated for insulin resistance. The effect of high-saturated fat feeding to enhance GSIS was retained in perifused islets, such that glucose stimulus-secretion coupling was potentiated. Acute replacement of 7% of dietary fatty acids with long-chain -3 fatty acids reversed insulin hypersecretion in vivo, and the effect of long-term high-saturated fat feeding to enhance insulin secretion by perifused islets was also completely reversed. Although a hyperbolic relationship existed between insulin secretion and action in the high-saturated fat and control groups, lowered insulin secretion in the acute fish oil-supplemented group was not accompanied by improved insulin action, and glucose tolerance was adversely affected. Our studies are important because they demonstrate that hyperinsulinemia can be rapidly reversed via the dietary provision of small amounts of long-chain -3 fatty acids. However, this "insulin sparing" action of acute dietary long-chain -3 fatty acids occurs in the absence of an acute improvement in insulin sensitivity and therefore at the expense of maintenance of glucose tolerance. Diabetes 53 (Suppl. 1)
Holness MJ, Smith ND, Greenwood GK, Sugden MC. PPAR␣ activation reverses adverse effects induced by high-saturated-fat feeding on pancreatic -cell function in late pregnancy. Am J Physiol Endocrinol Metab 292: E1087-E1094, 2007. First published December 12, 2006; doi:10.1152/ajpendo.00375.2006.-We examined whether the additional demand for insulin secretion imposed by dietary saturated fat-induced insulin resistance during pregnancy is accommodated at late pregnancy, already characterized by insulin resistance. We also assessed whether effects of dietary saturated fat are influenced by PPAR␣ activation or substitution of 7% of dietary fatty acids (FAs) with long-chain -3 FA, manipulations that improve insulin action in the nonpregnant state. Glucose tolerance at day 19 of pregnancy in the rat was impaired by high-saturated-fat feeding throughout pregnancy. Despite modestly enhanced glucose-stimulated insulin secretion (GSIS) in vivo, islet perifusions revealed an increased glucose threshold and decreased glucose responsiveness of GSIS in the saturated-fat-fed pregnant group. Thus, insulin resistance evoked by dietary saturated fat is partially countered by augmented insulin secretion, but compensation is compromised by impaired islet function. Substitution of 7% of saturated FA with long-chain -3 FA suppressed GSIS in vivo but did not modify the effect of saturated-fat feeding to impair GSIS by perifused islets. PPAR␣ activation (24 h) rescued impaired islet function that was identified using perifused islets, but GSIS in vivo was suppressed such that glucose tolerance was not improved, suggesting modification of the feedback loop between insulin action and secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.