This paper provides an in-depth review of the framework of analysis applied to biomedical data in the context of the challenges posed by the time dependence of living systems.
Abnormal cerebrospinal fluid (CSF) pulsatility has been implicated in patients suffering from various diseases, including multiple sclerosis and hypertension. CSF pulsatility results in subarachnoid space (SAS) width changes, which can be measured with near-infrared transillumination backscattering sounding (NIR-T/BSS). The aim of this study was to combine NIR-T/BSS and wavelet analysis methods to characterise the dynamics of the SAS width within a wide range of frequencies from 0.005 to 2 Hz, with low frequencies studied in detail for the first time. From recordings in the resting state, we also demonstrate the relationships between SAS width in both hemispheres of the brain, and investigate how the SAS width dynamics is related to the blood pressure (BP). These investigations also revealed influences of age and SAS correlation on the dynamics of SAS width and its similarity with the BP. Combination of NIR-T/BSS and time-frequency analysis may open up new frontiers in the understanding and diagnosis of various neurodegenerative and ageing related diseases to improve diagnostic procedures and patient prognosis.
Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.
Skin malignant melanoma is a highly angiogenic cancer, necessitating early diagnosis for positive prognosis. The current diagnostic standard of biopsy and histological examination inevitably leads to many unnecessary invasive excisions. Here, we propose a non-invasive method of identification of melanoma based on blood flow dynamics. We consider a wide frequency range from 0.005–2 Hz associated with both local vascular regulation and effects of cardiac pulsation. Combining uniquely the power of oscillations associated with individual physiological processes we obtain a marker which distinguishes between melanoma and atypical nevi with sensitivity of 100% and specificity of 90.9%. The method reveals valuable functional information about the melanoma microenvironment. It also provides the means for simple, accurate, in vivo distinction between malignant melanoma and atypical nevi, and may lead to a substantial reduction in the number of biopsies currently undertaken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.