As a result of the COVID-19 outbreak, which has put the world in an unprecedented predicament, thousands of people have died. Data from structured and unstructured sources are combined to create user-friendly platforms for clinicians and researchers in an integrated bioinformatics approach. The diagnosis and treatment of COVID-19 disease can be accelerated using AI-based platforms. In the battle against the virus, however, researchers and decision-makers must contend with an ever-increasing volume of data, referred to as “big data.” VGG19 and ResNet152V2 pretrained deep learning architectures were used in this study. With these datasets, we could train and fine-tune our model on lung ultrasound frames from healthy people as well as from patients with COVID-19 and pneumonia. In two separate experiments, we evaluated two different classes of predictive models: one against pneumonia and the other against non-COVID-19. COVID-19 can be detected and diagnosed accurately and efficiently using these models, according to the findings. Therefore, the use of these inexpensive and affordable deep learning methods should be considered as a reliable method for the diagnosis of COVID-19.
A novel random biased-genetic algorithm (NRB-GA) load-balancing algorithm that exhibits the characteristics of both genetic algorithms and biased random algorithms is designed and developed to improve the processing time and response time metrics of the cloud computing environment. The NRB-GA is designed to discover a virtual machine with fewer loads by applying a genetic algorithm with a fitness function that is inversely proportional to the average load over a period of time for each virtual machine and with biased parent selection to maximize the fitness values of offspring. The developed NRB-GA load-balancing algorithm is evaluated by analysing its performance for various simulated scenarios in a cloud computing environment with different user bases and data center configurations. The analysis of the experimental results of NRB-GA indicates that the average response time is reduced by 27.22%, 21.15%, and 22.34%, and the processing time is reduced by 25.73%, 16.14%, and 18.82% for one, two, and three data centers, respectively. It is evident that the proposed NRB-GA algorithm for load balancing outperforms other existing algorithms significantly.
The battery power limits the energy consumption of wireless sensor networks (WSN). As a result, its network performance suffered significantly. Therefore, this paper proposes an opportunistic energy-efficient routing protocol (OEERP) algorithm for reducing network energy consumption. It provides accurate target location detection, energy efficiency, and network lifespan extension. It is intended to schedule idle nodes into a sleep state, thereby optimising network energy consumption. Sleep is dynamically adjusted based on the network’s residual energy (RE) and flow rate (FR). It saves energy for a longer period. The sleep nodes are triggered to wake up after a certain time interval. The simulation results show that the proposed OEERP algorithm outperforms existing state-of-the-art algorithms in terms of accuracy, energy efficiency, and network lifetime extension.
The complexity of multimedia content, particularly images, has risen dramatically in recent years, and millions of images are shared on social media every day. Finding or retrieving an appropriate image is becoming more difficult due to the increase in the volume of shared and archived multimedia data. Any image retrieval model must, at a bare minimum, locate and classify images that are visually related to the user’s query. The vast majority of Internet search engines employ text algorithms that fetch images using captions as input. Even though there is a lot of study being done to increase the effectiveness of automatic image annotation, retrieval errors can occur due to differences in visual perception. Content-based image retrieval (CBIR) addresses the aforementioned issue because visual analysis of the content is included in the query image. On the other hand, feature extraction is significantly challenging because of semantic gap. This work proposes a strategy for effective retrieval in similarity images using the triadic color scheme RGB, YCbCr, and L ∗ a ∗ b ∗ based on reranking. We want to increase image similarity and encourage more relevant reranking. As a result of the findings, it can be concluded that a triadic color scheme improves precision by 5% more dramatically than existing schemes and also efficiently improves retrieved results while reducing user effort.
The difficulty or cost of obtaining data or labels in applications like medical imaging has progressed less quickly. If deep learning techniques can be implemented reliably, automated workflows and more sophisticated analysis may be possible in previously unexplored areas of medical imaging. In addition, numerous characteristics of medical images, such as their high resolution, three-dimensional nature, and anatomical detail across multiple size scales, can increase the complexity of their analysis. This study employs multiconvolutional transfer learning (MCTL) for applying deep learning to small medical imaging datasets in an effort to address these issues. Multiconvolutional transfer learning is a model based on transfer learning that enables deep learning with small datasets. In order to learn new features on a smaller target dataset, an initial baseline is used in the transfer learning process. In this study, 3D MRI images of brain tumors are classified using a convolutional autoencoder method. In order to use unenhanced Magnetic Resonance Imaging (MRI) for clinical diagnosis, expensive and invasive contrast-enhancing procedures must be performed. MCTL has been shown to increase accuracy by 1.5%, indicating that small targets are more easily detected with MCTL. This research can be applied to a wide range of medical imaging and diagnostic procedures, including improving the accuracy of brain tumor severity diagnosis through the use of MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.