The sclerotia of Polyporus umbellatus were collected from three locations in Japan and three locations in China. All the collected sclerotia were adhered to by rhizomorphs of the symbionts. When the sclerotium of P. umbellatus was cross sectioned, the internal part of the sclerotium was cream colored, and many black regions surrounding the invading rhizomorphs were observed. The surrounding zone contained string-like, gelatinous masses composed of hyphae, and its outside was brown in color. All isolates were similar in colony morphology and grew well on PDA medium with well-developed rhizomorphs. All the isolates showed typical morphology of Armillaria. The isolated fungi were identified via the ITS region of the nuclear ribosomal DNA sequence. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Armillaria species. Among them, five species (A. sinapina, A. calvescens, A. gallica, A. cepistipes, and A. nabsnona) and the symbiont formed a highly supported clade. We report on the case where Armillaria has a relationship in the sclerotium of Polyporus umbellatus.
The sclerotia of Polyporus umbellatus were collected from three locations in Japan and three locations in China. All the collected sclerotia were adhered to by rhizomorphs of the symbionts. When the sclerotium of P. umbellatus was cross sectioned, the internal part of the sclerotium was cream colored, and many black regions surrounding the invading rhizomorphs were observed. The surrounding zone contained string-like, gelatinous masses composed of hyphae, and its outside was brown in color. All isolates were similar in colony morphology and grew well on PDA medium with well-developed rhizomorphs. All the isolates showed typical morphology of Armillaria. The isolated fungi were identified via the ITS region of the nuclear ribosomal DNA sequence. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Armillaria species. Among them, five species (A. sinapina, A. calvescens, A. gallica, A. cepistipes, and A. nabsnona) and the symbiont formed a highly supported clade. We report on the case where Armillaria has a relationship in the sclerotium of Polyporus umbellatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.