Mendelian Randomization (MR) has been widely applied to infer causality of exposures on outcomes in the genome wide association (GWAS) era. Existing approaches are often subject to biases from multiple sources including weak instruments, sample overlap, and measurement error. We introduce MRBEE, a computationally efficient multivariable MR method that can correct for all known biases simultaneously, which is demonstrated in theory, simulations, and real data analysis. In comparison, all existing MR methods are biased. In two independent real data analyses, we observed that the causal effect of BMI on coronary artery disease risk is completely mediated by blood pressure, and that existing MR methods drastically underestimate the causal effect of cannabis use disorder on schizophrenia risk compared to MRBEE. We demonstrate that MRBEE can be a useful tool in studying causality between multiple risk factors and a disease outcome, especially as more GWAS summary statistics are being made publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.