Extensive studies have demonstrated that the Akt/AKT1 pathway is essential for cell survival and inhibition of apoptosis; however, alterations of Akt/AKT1 in human primary tumors have not been well documented. In this report, significantly increased AKT1 kinase activity was detected in primary carcinomas of prostate (16 of 30), breast (19 of 50), and ovary (11 of 28). The results were confirmed by Western blot and immunohistochemical staining analyses with phospho-Ser473 Akt antibody. The majority of AKT1-activated tumors are high grade and stage III/lV (13 of 16 prostate, 15 of 19 breast, and 8 of 11 ovarian carcinomas). Previous studies showed that wild-type AKT1 was unable to transform NIH3T3 cells. To demonstrate the biological significance of AKT1 activation in human cancer, constitutively activated AKT1 (Myr-Akt) was introduced into NIH3T3 cells. Overexpression of Myr-Akt in the stably transfected cells resulted in malignant phenotype, as determined by growth in soft agar and tumor formation in nude mice. These data indicate that AKT1 kinase, which is frequently activated in human cancer, is a determinant in oncogenesis and a potential target for cancer intervention.
We previously demonstrated that AKT2, a member of protein kinase B family, is activated by a number of growth factors via Ras and PI 3-kinase signaling pathways. Here, we report the frequent activation of AKT2 in human primary ovarian cancer and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase (PI 3-kinase)/Akt pathway. In vitro AKT2 kinase assay analyses in 91 ovarian cancer specimens revealed elevated levels of AKT2 activity (43-fold) in 33 cases (36.3%). The majority of tumors displaying activated AKT2 were high grade and stages III and IV. Immunostaining and Western blot analyses using a phospho-ser-473 Akt antibody that detects the activated form of AKT2 (AKT2 phosphorylated at serine-474) con®rmed the frequent activation of AKT2 in ovarian cancer specimens. Phosphorylated AKT2 in tumor specimens localized to the cell membrane and cytoplasm but not the nucleus. To address the mechanism of AKT2 activation, we measured in vitro PI 3-kinase activity in 43 ovarian cancer specimens, including the 33 cases displaying elevated AKT2 activation. High levels of PI 3-kinase activity were observed in 20 cases, 15 of which also exhibited AKT2 activation. The remaining ®ve cases displayed elevated AKT1 activation. Among the cases with elevated AKT2, but not PI 3-kinase activity (18 cases), three showed down-regulation of PTEN protein expression. Inhibition of PI 3-kinase/AKT2 by wortmannin or LY294002 induces apoptosis in ovarian cancer cells exhibiting activation of the PI 3-kinase/AKT2 pathway. These ®ndings demonstrate for the ®rst time that activation of AKT2 is a common occurrence in human ovarian cancer and that PI 3-kinase/Akt pathway may be an important target for ovarian cancer intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.