Spider dragline silk is Nature's high-performance protein fiber. This biomaterial has attracted much interest from scientists in various disciplines since it has become feasible to produce spider silk proteins by means of biotechnology. This article reports on research directed toward the regeneration of spider silk. A procedure is describedsincluding spinning and postspinning processings that produces fibers with promising mechanical properties from dissolved natural spider dragline silk. Tensile tests and structural characterization of the regenerated fibers illustrate correlations between the macroscopic and microscopic properties of the final material and between these properties and the fiber's processing history. Results point to the importance of an aqueous environment in the annealing of structure. The revealed structure-property relationships are expected to be of fundamental importance for the future design of man-made protein products.
Different kinds of organophilic montmorillonite cotreated by cetyltrimethyl ammonium bromide (CTAB) and aminoundecanoic acid (AUA) were synthesized and applied to prepare polyurethane/montmorillonite nanocomposites via solution intercalation. The results of wide-angle X-ray diffraction (WAXD) and transmission electron microscopy showed that, for the montmorillonite modified with CTAB and CTAB/AUA (molar ratio of 1/2), an ordered intercalated nanostructure was derived, while for the montmorillonite treated with AUA, a disordered nanostructure was derived. The tensile properties of the polyurethane (PU) nanocomposites showed higher enhancement relative to PU matrix. TG showed that there is some enhancement in degradation behavior between the nanocomposites and PU matrix. DMTA results showed that nanocomposites from some organophilic montmorillonites showed a much higher storage modulus below and above glass transition temperature, while the nanocomposites from montmorillonite treated by AUA show an even lower storage modulus. The loss curves showed that the main glass transition temperature of PU was improved to some extent for the nanocomposites. The water absorption of PU and nanocomposites was also studied and the difference in reduction was thoroughly analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.