White button mushrooms (Agaricus bisporous) are a potential breast cancer chemopreventive agent, as they suppress aromatase activity and estrogen biosynthesis. Therefore, we evaluated the activity of mushroom extracts in the estrogen receptor-positive/aromatase-positive MCF-7aro cell line in vitro and in vivo. Mushroom extract decreased testosterone-induced cell proliferation in MCF-7aro cells but had no effect on MCF-10A, a nontumorigenic cell line. Most potent mushroom chemicals are soluble in ethyl acetate. The major active compounds found in the ethyl acetate fraction are unsaturated fatty acids such as linoleic acid, linolenic acid, and conjugated linoleic acid. The interaction of linoleic acid and conjugated linoleic acid with aromatase mutants expressed in Chinese hamster ovary cells showed that these fatty acids inhibit aromatase with similar potency and that mutations at the active site regions affect its interaction with these two fatty acids. Whereas these results suggest that these two compounds bind to the active site of aromatase, the inhibition kinetic analysis indicates that they are noncompetitive inhibitors with respect to androstenedione. Because only conjugated linoleic acid was found to inhibit the testosteronedependent proliferation of MCF-7aro cells, the physiologically relevant aromatase inhibitors in mushrooms are most likely conjugated linoleic acid and its derivatives. The in vivo action of mushroom chemicals was shown using nude mice injected with MCF-7aro cells. The studies showed that mushroom extract decreased both tumor cell proliferation and tumor weight with no effect on rate of apoptosis. Therefore, our studies illustrate the anticancer activity in vitro and in vivo of mushroom extract and its major fatty acid constituents.
Aromatase is the enzyme that converts androgen to estrogen. It is expressed at higher levels in breast cancer tissues than normal breast tissues. Grape seed extract (GSE) contains high levels of procyanidin dimers that have been shown in our laboratory to be potent inhibitors of aromatase. In this study, GSE was found to inhibit aromatase activity in a dosedependent manner and reduce androgen-dependent tumor growth in an aromatase-transfected MCF-7 (MCF-7aro) breast cancer xenograft model, agreeing with our previous findings. We have also examined the effect of GSE on aromatase expression. Reverse transcription-PCR experiments showed that treatment with 60 Mg/mL of GSE suppressed the levels of exon I.3-, exon PII-, and exon I.6-containing aromatase mRNAs in MCF-7 and SK-BR-3 cells. The levels of exon I.1-containing mRNA, however, did not change with GSE treatment. Transient transfection experiments with luciferasearomatase promoter I.3/II or I.4 reporter vectors showed the suppression of the promoter activity in a dose-dependent manner. The GSE treatment also led to the down-regulation of two transcription factors, cyclic AMP-responsive element binding protein-1 (CREB-1) and glucocorticoid receptor (GR). CREB-1 and GR are known to up-regulate aromatase gene expression through promoters I.3/II and I.4, respectively. We believe that these results are exciting in that they show GSE to be potentially useful in the prevention/treatment of hormone-dependent breast cancer through the inhibition of aromatase activity as well as its expression. (Cancer Res 2006; 66(11): 5960-7)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.