Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. Δ OGG1, Δ UNG, Δ EXO1, Δ RNF168, Δ MLH1, Δ MSH2, Δ MSH6, Δ PMS1, and Δ PMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a ‘reverse template slippage’ model for T>A transversions. Δ MLH1, Δ MSH6, and Δ MSH2 signatures were similar to each other but distinct from Δ PMS2 . Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies.
Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. Here, we generate isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, culture them in the absence of added DNA damage, and perform wholegenome sequencing of 173 daughter subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produce marked mutational signatures indicative of being critical mitigators of endogenous DNA changes. Detailed analyses reveal that 8-oxo-dG removal by different repair proteins is sequence-context-specific while uracil clearance is sequencecontext-independent. Signatures of mismatch repair (MMR) deficiency show components of C>A transversions due to oxidative damage, T>C and C>T transitions due to differential misincorporation by replicative polymerases, and T>A transversions for which we propose a ‘reverse template slippage’ model. ΔMLH1, ΔMSH6, and ΔMSH2 signatures are similar to each other but distinct from ΔPMS2. We validate these gene-specificities in cells from patients with Constitutive Mismatch Repair Deficiency Syndrome. Based on these experimental insights, we develop a classifier, MMRDetect, for improved clinical detection of MMR-deficient tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.