A fail-safe algorithm in case of motor failure was developed, simulated, and tested. For practical fail-safe flight, the quadcopter may fly with only three or two opposing propellers. Altitude for two-propeller architecture was maintained by a PID controller that is independent from the inner and outer controllers. A PID controller on propeller force deviations from equilibrium was augmented to the inner controller of the threepropeller architecture. Both architectures used LQR for the inner attitude controller and a damped second order outer controller that zeroes the error along the horizontal coordinates. The restrictiveness, stability, robustness, and symmetry of these architectures were investigated with respect to their output limits, initial conditions, and controller frequencies. Although the three-propeller architecture allows for distribution of propeller forces, the two-propeller architecture is more efficient, robust, and stable. The two-propeller architecture is also robust to model uncertainties. It was shown that higher yaw rate leads to greater stability when operating in fail-safe mode.
To properly simulate and implement a quadcopter flight control for intended load and flight conditions, the quadcopter model must have parameters on various relationships including propeller thrust-torque, thrust-PWM, and thrust-angular speed to a certain level of accuracy. Thrust-torque modeling requires an expensive reaction torque measurement sensor. In the absence of sophisticated equipment, the study comes up with alternative methods to complete the quadcopter model. The study also presents a method of modeling the rotational aerodynamic drag on the quadcopter. Although the resulting model of the reaction torque generated by the quadcopter's propellers and the model of the drag torque acting on the quadcopter body that are derived using the methods in this study may not yield the true values of these quantities, the experimental modeling techniques presented in this work ensure that the derived dynamic model for the quadcopter will nevertheless behave identically with the true model for the quadcopter. The derived dynamic model is validated by basic flight controller simulation and actual flight implementation. The model is used as basis for a quadcopter design, which eventually is used for test purposes of basic flight control. This study serves as a baseline for fail-safe control of a quadcopter experiencing an unexpected motor failure.
A fail-safe algorithm in case of motor failure was developed, simulated, and tested. For practical fail-safe flight, the quadcopter may fly with only three or two opposing propellers. Altitude for two-propeller architecture was maintained by a PID controller that is independent from the inner and outer controllers. A PID controller on propeller force deviations from equilibrium was augmented to the inner controller of the three-propeller architecture. Both architectures used LQR for the inner attitude controller and a damped second order outer controller that zeroes the error along the horizontal coordinates. The restrictiveness, stability, robustness, and symmetry of these architectures were investigated with respect to their output limits, initial conditions, and controller frequencies. Although the three-propeller architecture allows for distribution of propeller forces, the two-propeller architecture is more efficient, robust, and stable. The two-propeller architecture is also robust to model uncertainties. It was shown that higher yaw rate leads to greater stability when operating in fail-safe mode.
To properly simulate and implement a quadcopter flight control for intended load and flight conditions, the quadcopter model must have parameters on various relationships including propeller thrust-torque, thrust-PWM, and thrust–angular speed to a certain level of accuracy. Thrust-torque modeling requires an expensive reaction torque measurement sensor. In the absence of sophisticated equipment, the study comes up with alternative methods to complete the quadcopter model. The study also presents a method of modeling the rotational aerodynamic drag on the quadcopter. Although the resulting model of the reaction torque generated by the quadcopter’s propellers and the model of the drag torque acting on the quadcopter body that are derived using the methods in this study may not yield the true values of these quantities, the experimental modeling techniques presented in this work ensure that the derived dynamic model for the quadcopter will nevertheless behave identically with the true model for the quadcopter. The derived dynamic model is validated by basic flight controller simulation and actual flight implementation. The model is used as basis for a quadcopter design, which eventually is used for test purposes of basic flight control. This study serves as a baseline for fail-safe control of a quadcopter experiencing an unexpected motor failure.
A fail-safe algorithm in case of motor failure was developed, simulated, and tested. For practical fail-safe flight, the quadcopter may fly with only three or two opposing propellers. Altitude for two-propeller architecture was maintained by a PID controller that is independent from the inner and outer controllers. A PID controller on propeller force deviations from equilibrium was augmented to the inner controller of the three-propeller architecture. Both architectures used LQR for the inner attitude controller and a damped second order outer controller that zeroes the error along the horizontal coordinates. The restrictiveness, stability, robustness, and symmetry of these architectures were investigated with respect to their output limits, initial conditions, and controller frequencies. Although the three-propeller architecture allows for distribution of propeller forces, the two-propeller architecture is more efficient, robust, and stable. The two-propeller architecture is also robust to model uncertainties. It was shown that higher yaw rate leads to greater stability when operating in fail-safe mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.