Energetic materials have been used for nearly two centuries in military affairs and to cut labor costs and expedite laborious processes in mining, tunneling, construction, demolition, and agriculture, making a tremendous contribution to the world economy. Yet there has been little advancement in the development of altogether new energetic motifs despite long-standing research efforts to develop superior materials. We report the discovery of new energetic compounds of exceptionally high energy content and novel polymeric structure which avoid the use of lead and mercury salts common in conventional primary explosives. Laboratory tests indicate the remarkable performance of these Ni- and Co-based energetic materials, while DFT calculations indicate that these are possibly the most powerful metal-based energetic materials known to date, with heats of detonation comparable with those of the most powerful organic-based high explosives currently in use.
Infrared spectroscopy was applied to probe water inside pores and channels of Nafion membrane exchanged with either proton (H+) or sodium ions (Na+). Transmission measurements were performed on freestanding Nafion 112 (approximately 50 microm thickness) in a cell that enabled adjustment of the relative humidity. Experiments that employed Na+-exchanged Nafion focused on relative humidity environments at or below about 32% generated through the use of humectants. Under these conditions, narrow features in the O-H stretching spectral region near 3650-3720 cm(-1), previously attributed to interfacial water, were detected and matched to bands in vibrational sum frequency (VSF) spectra of water/air, water/organic, and salt-solution/air interfaces. The features correspond to the stretching mode of the "free" OH group of water oriented with one hydrogen atom toward other water molecules and interacting through hydrogen bonding and the other straddling the interface extending into fluorocarbon-rich regions (approximately 3668 cm(-1)) or air-filled segments (approximately 3700 cm(-1)) in the membrane. For membrane exchanged with H+, -SO3- groups were easily shifted to -SO3H as water was removed upon exposure to a few Torr of vacuum at 95 degrees C. In contrast, residual water was retained by membrane exchanged with Na+ after exposure to these conditions for up to 72 h. The permeation of methanol and acetone into Na+-exchanged Nafion 112 was also examined. The C-H and O-H stretching modes of methanol were perturbed in a manner that suggests the polymer disrupts hydrogen bonding interactions within the solvent, similar to the effect it exerts on pure water. For acetone, the C-H stretching modes were not shifted appreciably compared to those of the bulk liquid. However, the carbonyl band was affected, indicating the likely importance of dipolar interactions between solvent molecules and polar groups on the polymer. Control experiments performed with poly(hexafluoropropylene-co-tetrafluoroethylene) (FEP) membrane did not show evidence for water or methanol permeation, which demonstrates the critical role played by the ion-filled channels and pores in facilitating solvent transport within Nafion membrane.
Second-generation cobalt and zinc coordination architectures were obtained through efforts to stabilize extremely sensitive and energetic transition-metal hydrazine perchlorate ionic polymers. Partial ligand substitution by the tridentate hydrazinecarboxylate anion afforded polymeric 2D-sheet structures never before observed for energetic materials. Carefully balanced reaction conditions allowed the retention of the noncoordinating perchlorate anion in the presence of a strongly chelating hydrazinecarboxylate ligand. High-quality X-ray single-crystal structure determination revealed that the metal coordination preferences lead to different structural motifs and energetic properties, despite the nearly isoformulaic nature of the two compounds. Energetic tests indicate highly decreased sensitivity and DFT calculations suggest a high explosive performance for these remarkable structures.
Porphyrin synthesis under solvent-free conditions represents the “greening” of a traditional synthesis that normally requires large amounts of organic solvent, and has hindered industrial-scale synthesis of this useful class of molecules. We have found that the four-fold acid-catalysed condensation of aldehyde and pyrrole to yield a tetra-substituted porphyrin is possible through mechanochemical techniques, without a solvent present. This represents one of the still-rare examples of carbon-carbon bond formation by mechanochemistry. Specifically, upon grinding equimolar amounts of pyrrole and benzaldehyde in presence of an acid catalyst, cyclization takes place to give reduced porphyrin precursors (reversible), which upon oxidation form tetraphenylporphyrin (TPP). The approach has been found suitable for synthesis of a variety of meso-tetrasubstituted porphyrins. Oxidation can occur either by using an oxidizing agent in solution, to give yields comparable to those published for traditional methods of porphyrin synthesis, or through mechanochemical means resulting in a two-step mechanochemical synthesis to give slightly lower yields that are still being optimized. We are also working on “green” methods of porphyrin isolation, including entrainment sublimation, which would hopefully further reduce the need for large amounts of organic solvent. These results hold promise for the development of mechanochemical synthetic protocols for porphyrins and related classes of compounds.
The ability to direct the morphology of cobalt sol-gel materials by using the simple synthetic parameters in epoxide-driven polycondensations has been dramatically demonstrated, and the influence of such morphological differences upon the supercapacity of the materials has been explored. Precursor salt, epoxide, and solvent all influence the speed of the sol-gel transition and the size and shape of the features observed in the as-prepared materials, thereby leading to highly varied microstructures including spheres, sponge-like networks, and plate assemblies of varied size. These morphological features of the as-prepared cobalt aerogels were observed for the first time by high resolution scanning electron microscopy (HRSEM). The as-prepared aerogel materials were identified by powder X-ray diffraction and thermogravimetry as weakly crystalline or amorphous cobalt basic salts with the general formula Co(OH)(2-n)X(n) where X = Cl or NO3 according to the precursor salt used in the synthesis. For all samples, the morphology was preserved through mild calcining to afford spinel phase Co3O4 in a variety of microstructures. Wide-ranging specific surface areas were determined for the as-prepared and calcined phases by physisorption analysis in agreement with the morphologies observed by HRSEM. The Co3O4 aerogels were evaluated for their supercapacitive performance by cyclic voltammetry. The various specimens exhibit capacitances ranging from 110 to 550 F g(-1) depending upon the attributes of the particular aerogel material, and the best specimen was found to have good cycle stability. These results highlight the epoxide-driven sol-gel condensation as a versatile preparative route that provides wide scope in materials' properties and enables the analysis of structure-performance relationships in metal oxide materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.