A woman has an increased risk of breast cancer if her lifelong estrogen exposure is increased due to an early menarche, a late menopause, and/or an absence of childbearing. For decades, it was presumed that the number of years of exposure drove the increased risk, however, recent epidemiological data have shown that early life exposure (young menarche) has a more significant effect on cancer risk than late menopause. Thus, rather than the overall exposure it seems that the timing of hormone exposure plays a major role in defining breast cancer risk. In support of this, it is also known that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This suggests that the effects of estrogen on the mammary gland/breast are age-dependent. In this review article, we will discuss the existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure. We will discuss the predominantly rodent generated experimental data that confirm the association with hormone exposure and breast cancer risk, confirming its use as a model system. We will review the work that has been done attempting to define the direct effects of estrogen on the breast, which are beginning to reveal the mechanism of increased cancer risk. We will then conclude with our views on the most pertinent questions to be addressed experimentally in order to explore the relationship between age, estrogen exposure, and breast cancer risk.
In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in DNA repair gene RAD51C are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. RAD51C promoter methylation (meRAD51C) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved. In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the RAD51C promoter show responses to PARPi. Both complete and heterogeneous methylation patterns were associated with RAD51C gene silencing and homologous recombination deficiency (HRD). PDX models lost meRAD51C following treatment with PARPi rucaparib or niraparib, where a single unmethylated copy of RAD51C was sufficient to drive PARPi resistance. Genomic copy number profiling of one of the PDX models using SNP arrays revealed that this resistance was acquired independently in two genetically distinct lineages. In a cohort of 12 patients with RAD51C-methylated HGSC, various patterns of meRAD51C were associated with genomic “scarring,” indicative of HRD history, but exhibited no clear correlations with clinical outcome. Differences in methylation stability under treatment pressure were also observed between patients, where one HGSC was found to maintain meRAD51C after six lines of therapy (four platinum-based), whereas another HGSC sample was found to have heterozygous meRAD51C and elevated RAD51C gene expression (relative to homozygous meRAD51C controls) after only neoadjuvant chemotherapy. As meRAD51C loss in a single gene copy was sufficient to cause PARPi resistance in PDX, methylation zygosity should be carefully assessed in previously treated patients when considering PARPi therapy. Significance: Homozygous RAD51C methylation is a positive predictive biomarker for sensitivity to PARP inhibitors, whereas a single unmethylated gene copy is sufficient to confer resistance.
MCF-7 cells are a slow growing estrogen receptor (ER) positive human breast cancer cell line that is commonly used to model estrogen responsive breast cancer cell growth in-vitro and tumour growth in-vivo. These tumours require estrogen supplementation, and in-vivo doses of between 0.72mg and 2mg estradiol pellets are commonly implanted in the dorsal flank of ovariectomised, immunocompromised mice. We wanted to grow MCF-7 tumours in immunocompromised mice without the need to be ovariectomised. When we treated immunocompromised mice with 0.72mg pellets to induce MCF7 tumour growth, the mice developed urosepsis. We have now shown that lower doses of estradiol pellets, 0.3mg and 0.5mg, induce elevated serum estrogen levels and maintain tumour growth, without causing urosepsis. Supplementation for only one week did not support sustained MCF7 tumour growth. In conclusion, 0.3mg and 0.5mg silastic pellets can be used to stimulate ER+ breast cancer growth in ovary-intact, immune compromised mice.
Estrogen induces proliferation of breast epithelial cells and is responsible for breast development at puberty. This tightly regulated control is lost in estrogen-receptor-positive (ER+) breast cancers, which comprise over 70% of all breast cancers. Currently, breast cancer diagnosis and treatment considers only the α isoform of ER; however, there is a second ER, ERβ. Whilst ERα mediates estrogen-driven proliferation of the normal breast in puberty and breast cancers, ERβ has been shown to exert an anti-proliferative effect on the normal breast. It is not known how the expression of each ER (alone or in combination) correlates with the ability of estrogen to induce proliferation in the breast. We assessed the levels of each ER in normal mouse mammary glands subdivided into proliferative and non-proliferative regions. ERα was most abundant in the proliferative regions of younger mice, with ERβ expressed most abundantly in old mice. We correlated this expression profile with function by showing that the ability of estrogen to induce proliferation was reduced in older mice. To show that the ER profile associated with breast cancer risk, we assessed ER expression in parous mice which are known to have a reduced risk of developing ERα breast cancer. ERα expression was significantly decreased yet co-localization analysis revealed ERβ expression increased with parity. Parous mice had less unopposed nuclear ERα expression and increased levels of ERβ. These changes suggest that the nuclear expression of ERs dictates the proliferative nature of the breast and may explain the decreased breast cancer risk with parity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.