Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes, were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes, the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m−3, despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes, smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes, there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably.
Effective control of infectious diseases is facilitated by informed decisions that require accurate and timely diagnosis of disease. For malaria, improved access to malaria diagnostics has revolutionized malaria control and elimination programmes. However, for COVID-19, diagnosis currently remains largely centralized and puts many low- and middle-income countries (LMICs) at a disadvantage. Malaria and COVID-19 are infectious diseases that share overlapping symptoms. While the strategic responses to disease control for malaria and COVID-19 are dependent on the disease ecologies of each disease, the fundamental need for accurate and timely testing remains paramount to inform accurate responses. This review highlights how the roll-out of rapid diagnostic tests has been fundamental in the fight against malaria, primarily within the Asia Pacific and along the Greater Mekong Subregion. By learning from the successful elements of malaria control programmes, it is clear that improving access to point-of-care testing strategies for COVID-19 will provide a suitable framework for COVID-19 diagnosis in not only the Asia Pacific, but all malarious countries. In malaria-endemic countries, an integrated approach to point-of-care testing for COVID-19 and malaria would provide bi-directional benefits for COVID-19 and malaria control, particularly due to their paralleled likeness of symptoms, infection control strategies and at-risk individuals. This is especially important, as previous disease pandemics have disrupted malaria control infrastructure, resulting in malaria re-emergence and halting elimination progress. Understanding and combining strategies may help to both limit disruptions to malaria control and support COVID-19 control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.