Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations—without the concomitant requirement of sleep—play a causal role in human synaptic homeostasis. Here, we aimed to answer this question using transcranial alternating current stimulation (tACS) to induce slow-oscillatory activity in awake human participants. tACS was interleaved between two plasticity-inducing interventions: motor learning, and paired associative stimulation (PAS). The hypothesis tested was that slow-oscillatory tACS would prevent homeostatic interference between motor learning and PAS, and facilitate plasticity from these successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings, while a further 38 participants received tACS through a control montage. Motor evoked potentials (MEPs) were recorded throughout the session to quantify plasticity changes after the different interventions, and the data were analysed with Bayesian statistics. As expected, there was converging evidence that motor training led to excitatory plasticity. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans.
Background:We aimed to determine the psychometric properties and factor structure of the 19-item Female Sexual Function Index (FSFI) in 132 sexually active women previously treated for breast cancer.Methods: Confirmatory factor analysis explored three models: (a) second-order six-factor, (b) six-factor, and (c) five-factor models combining the desire and arousal subscales.Results: Results revealed excellent reliability for the total score (Cronbach's α = 0.94), and domain scores (all Cronbach's αs > 0.90), and good convergent and discriminant validity. The six-factor model provided the best fit of the models assessed, but a marginal overall fit (Tucker-Lewis index = 0.91, comparative fit index = 0.93, root mean square error of approximation = 0.09). Exploratory factor analyses (EFA) supported a four-factor structure, revealing an arousal/orgasm factor alongside the original pain, lubrication, and satisfaction domains.
Conclusion:The arousal/orgasm factor suggests a "sexual response" construct, potentially arising from an underlying latent factor involving physical and mental stimulation in conceptualizations of arousal and orgasm in women treated for breast cancer. Finally, the EFA failed to capture an underlying desire factor, potentially due to measurement error associated with the small number of items (two) in this domain. Despite evidence that the FSFI has sound psychometric properties, our results suggest that the current conceptualizations of the FSFI might not accurately represent sexual functioning in women previously treated for breast cancer. Further research is required to elucidate the factors that influence desire, arousal, and orgasm in sexually active women in this population, and the reasons underlying sexual inactivity. Practical and theoretical implications for FSFI use in this population are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.