Previous work has demonstrated that the small hydrophobic (SH) protein of human respiratory syncytial virus (RSV) A2 strain is a 64 amino acid integral membrane protein that accumulates intracellularly as an unglycosylated major species (SH0), a minor species truncated at the amino terminus and two N-glycosylated species one of which contains a further addition of polylactosamine. In this study, the membrane orientation of SH 0 was mapped by trypsinization of intact RSV-infected cells followed by washout, lysis and immunoprecipitation of protected fragments with antisera specific for the protein termini. This showed that the C terminus is extracellular and the SH protein was not detectably palmitylated. Analysis of the SH protein by sedimentation on sucrose gradients showed that it rapidly assembles into a homo-oligomer that cosediments with the F protein tetramer. Interestingly, all forms of the SH protein were found in the oligomeric fraction. Chemical cross-linking generated species which appeared to represent dimers, trimers, tetramers and pentamers as well as a minor species of 180K which might correspond to the oligomeric form detected by sucrose gradient sedimentation.
A Sendai virus expression vector in the form of a transcribing copy-back defective interfering RNA was constructed and shown to efficiently express a tagged matrix protein in the only context of a Sendai virus infection. In an attempt to identify relevant M protein domains involved in viral assembly and budding, a series of deletion mutants were tested for their ability to bind to cellular membrane fractions. The deletion of a region spanning amino acids 105-137 significantly decreased this binding when the protein was expressed in a system driven by the T7 RNA polymerase away from any other viral proteins. Plus or minus charges were introduced in the hydrophobic portion of a predicted amphiphilic helix in this region, and M proteins with altered membrane binding properties were produced. The genes encoding these mutant M proteins were then inserted in the Sendai virus vector and shown to be expressed at levels similar to that of the endogenous wild-type M protein. The presence of a negative charge in the hydrophobic region of the putative amphiphilic helix prevented the incorporation of the mutant protein into virus particles and appeared to decrease the efficiency of virus particle budding. In contrast, the introduction of a positive charge appeared to increase the M mutant uptake into virions. The use a Sendai virus vector has therefore been shown instrumental in the identification of mutant M proteins interfering with the viral assembly-budding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.