In this article, we describe a long-non-coding RNA (lncRNA) and disease association database (LncRNADisease), which is publicly accessible at http://cmbi.bjmu.edu.cn/lncrnadisease. In recent years, a large number of lncRNAs have been identified and increasing evidence shows that lncRNAs play critical roles in various biological processes. Therefore, the dysfunctions of lncRNAs are associated with a wide range of diseases. It thus becomes important to understand lncRNAs’ roles in diseases and to identify candidate lncRNAs for disease diagnosis, treatment and prognosis. For this purpose, a high-quality lncRNA–disease association database would be extremely beneficial. Here, we describe the LncRNADisease database that collected and curated approximately 480 entries of experimentally supported lncRNA–disease associations, including 166 diseases. LncRNADisease also curated 478 entries of lncRNA interacting partners at various molecular levels, including protein, RNA, miRNA and DNA. Moreover, we annotated lncRNA–disease associations with genomic information, sequences, references and species. We normalized the disease name and the type of lncRNA dysfunction and provided a detailed description for each entry. Finally, we developed a bioinformatic method to predict novel lncRNA–disease associations and integrated the method and the predicted associated diseases of 1564 human lncRNAs into the database.
We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings.
Sensory neurons within skin form an interface between the external physical reality and the inner tactile perception. This interface enables sensory information to be organized identified, and interpreted through perceptual learning-the process whereby the sensing abilities improve through experience. Here, an artificial sensory neuron that can integrate and differentiate the spatiotemporal features of touched patterns for recognition is shown. The system comprises sensing, transmitting, and processing components that are parallel to those found in a sensory neuron. A resistive pressure sensor converts pressure stimuli into electric signals, which are transmitted to a synaptic transistor through interfacial ionic/electronic coupling via a soft ionic conductor. Furthermore, the recognition error rate can be dramatically decreased from 44% to 0.4% by integrating with the machine learning method. This work represents a step toward the design and use of neuromorphic electronic skin with artificial intelligence for robotics and prosthetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.