IMPORTANCE A relapse into nicotine addiction during abstinence often occurs after the reactivation of nicotine reward memories, either by acute exposure to nicotine (a smoking episode) or by smoking-associated conditioned stimuli (CS). Preclinical studies suggest that drug reward memories can undergo memory reconsolidation after being reactivated, during which they can be weakened or erased by pharmacological or behavioral manipulations. However, translational clinical studies using CS-induced memory retrieval-reconsolidation procedures to decrease drug craving reported inconsistent results. OBJECTIVE To develop and test an unconditioned stimulus (UCS)-induced retrieval-reconsolidation procedure to decrease nicotine craving among people who smoke. DESIGN, SETTING, AND PARTICIPANTS A translational rat study and human study in an academic outpatient medical center among 96 male smokers (aged 18–45 years) to determine the association of propranolol administration within the time window of memory reconsolidation (after retrieval of the nicotine-associated memories by nicotine UCS exposure) with relapse to nicotine-conditioned place preference (CPP) and operant nicotine seeking in rats, and measures of preference to nicotine-associated CS and nicotine craving among people who smoke. INTERVENTION The study rats were injected noncontingently with the UCS (nicotine 0.15 mg/kg, subcutaneous) in their home cage, and the human study participants administered a dose of propranolol (40 mg, per os; Zhongnuo Pharma). MAIN OUTCOMES AND MEASURES Nicotine CPP and operant nicotine seeking in rats, and preference and craving ratings for newly learned and preexisting real-life nicotine-associated CS among people who smoke. RESULTS Sixty-nine male smokers completed the experiment and were included for statistical analysis: 24 in the group that received placebo plus 1 hour plus UCS, 23 who received propranolol plus 1 hour plus UCS, and 22 who received UCS plus 6 hours plus propranolol. In rat relapse models, propranolol injections administered immediately after nicotine UCS-induced memory retrieval inhibited subsequent nicotine CPP and operant nicotine seeking after short (CPP, d = 1.72, 95% CI, 0.63–2.77; operant seeking, d = 1.61, 95% CI, 0.59–2.60) or prolonged abstinence (CPP, d = 1.46, 95% CI, 0.42–2.47; operant seeking: d = 1.69, 95% CI, 0.66–2.69), as well as nicotine priming-induced reinstatement of nicotine CPP (d = 1.28, 95% CI, 0.27–2.26) and operant nicotine seeking (d = 1.61, 95% CI, 0.59–2.60) after extinction. Among the smokers, oral propranolol administered prior to nicotine UCS-induced memory retrieval decreased subsequent nicotine preference induced by newly learned nicotine CS (CS1, Cohen d =0.61, 95% CI, 0.02–1.19 and CS2, d = 0.69, 95% CI, 0.10–1.28, respectively), preexisting nicotine CS (d = 0.57, 95% CI, −0.02 to 1.15), and nicotine priming (CS1, d = 0.82, 95% CI, 0.22–1.41 and CS2, d = 0.78, 95% CI, 0.18–1.37, respectively; preexisting nicotine CS, d = 0.92, 95% CI, 0.31–1.52), as well as nicotine c...
BACKGROUND: Nicotine craving and relapse often occurs after reactivation of nicotine reward memories. We recently developed a memory retrieval–reconsolidation interference procedure in which reactivating nicotine reward memories by acute exposure to nicotine (the unconditioned stimulus [UCS]) and then pharmacologically interfering with memory reconsolidation decreased relapse to nicotine seeking in rats and nicotine craving in smokers. Here, we investigated underlying mechanisms. METHODS: In the first series of experiments, we trained rats for nicotine-induced conditioned place preference (CPP) or nicotine self-administration and ventricularly microinjected them with the protein synthesis inhibitor anisomycin immediately after UCS-induced memory retrieval. In the second series of experiments, we used tyramide-amplified immunohistochemistry–fluorescence in situ hybridization to examine neural ensembles in the basolateral amygdala (BLA) reactivated by nicotine conditioned stimulus– or UCS-induced memory retrieval. We then used the Daun02 chemogenetic inactivation procedure to selectively inhibit the nicotine UCS-reactivated BLA neuronal ensembles. RESULTS: Ventricular injections of the anisomycin immediately after nicotine UCS memory retrieval inhibited sub-sequent nicotine CPP and relapse to operant nicotine seeking after short or prolonged abstinence. More important, within BLA, distinct neuronal ensembles encoded pavlovian CPP and operant self-administration reward memories and nicotine (the UCS) injections in the home cage reactivated both neuronal ensembles. Daun02 chemogenetic inactivation of the nicotine-reactivated ensembles inhibited both nicotine CPP and relapse to nicotine seeking. CONCLUSIONS: Results demonstrate that the nicotine UCS-induced memory retrieval manipulation reactivates multiple nicotine reward memories that are encoded by distinct BLA neuronal ensembles that play a role in nicotine preference and relapse.
Posttraumatic stress disorder (PTSD) is an anxiety disorder characterized by intrusive recollections of a severe traumatic event and hyperarousal following exposure to the event. Human and animal studies have shown that the change of amygdala activity after traumatic stress may contribute to occurrences of some symptoms or behaviors of the patients or animals with PTSD. However, it is still unknown how the neuronal activation of different sub-regions in amygdala changes during the development of PTSD. In the present study, we used single prolonged stress (SPS) procedure to obtain the animal model of PTSD, and found that 1 day after SPS, there were normal anxiety behavior and extinction of fear memory in rats which were accompanied by a reduced proportion of activated glutamatergic neurons and increased proportion of activated GABAergic neurons in basolateral amygdala (BLA). About 10 days after SPS, we observed enhanced anxiety and impaired extinction of fear memory with increased activated both glutamatergic and GABAergic neurons in BLA and increased activated GABAergic neurons in central amygdala (CeA). These results indicate that during early and late phase after traumatic stress, distinct patterns of activation of glutamatergic neurons and GABAergic neurons are displayed in amygdala, which may be implicated in the development of PTSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.