Monotonous luminescence has always been a major factor limiting the application of organic room‐temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host–guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X‐rays. Therefore, the triplet excitons were easily quenched and colorimetric multi‐stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.
Dynamically tunable room-temperature phosphorescence (RTP) organic materials have attracted considerable attention in recent years due to their great potential over a wide variety of advanced applications. However, the precise regulation of the intersystem crossing (ISC) process for efficient RTP materials with dynamically modulated properties in a rigid environment is challenging. Herein, an effective strategy for RTP material preparation with controllably regulated properties is developed via the construction of dynamic metal-ligand coordination in a host-guest doped system. The coordination interaction promotes ISC and phosphorescence emission of the guest, thus allowing the modulation of the photophysical properties of doped materials by changing the doping ratio and Zn 2+ counterions. By taking advantage of the reversible metal-ligand coordination interaction, the coordination-activated, and dissociation-deactivated RTP is dynamically manipulated. With the unique Zn 2+ -responsible RTP enhancement materials, the anti-counterfeiting applications of thermal development, and color inversion have been constructed for inkjet printing of high-resolution patterns with high reversibility for many write/erase cycles. The results show that dynamic metal-ligand coordination strategy is a promising approach for achieving efficient RTP materials with controllably modulated properties.
Small molecular host−guest doped materials exhibit superiority toward highefficiency room-temperature phosphorescence (RTP) materials due to their structural design diversity and ease of preparation. Dynamic RTP materials display excellent characteristics, such as good reversibility, quick response, and tunable luminescence ability, making them applicable to various cutting-edge technologies. Herein, we summarize the advances in host−guest doped dynamic RTP materials that respond to external and internal stimuli and present some insights into the molecular design strategies and underlying mechanisms. Subsequently, specific viewpoints are described regarding this promising field for the development of dynamic RTP materials. This Perspective is highly beneficial for future intelligent applications of dynamic RTP systems.
Monotonous luminescence has always been a major factor limiting the application of organic room‐temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host–guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X‐rays. Therefore, the triplet excitons were easily quenched and colorimetric multi‐stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.
Halogenb …i ffective tool in solid-state supramolecular chemistry to stabilize crystal structures.I nt heir Research Article (e202200236), Zhengxu Cai and co-workers introduced intermolecular halogen bonding (CN•••Br) into ahost-guest room-temperature phosphorescence (RTP) system, achieving fluorescence-phosphorescence dual emission. Thew eak intermolecular interactions of the halogen bond are sensitive to external stimuli (heat, mechanical force and X-rays), realizing colorimetric multi-stimuli response behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.