Digital light processing bioprinting favors biofabrication of tissues with improved structural complexity. However, soft-tissue fabrication with this method remains a challenge to balance the physical performances of the bioinks for high-fidelity bioprinting and suitable microenvironments for the encapsulated cells to thrive. Here, we propose a molecular cleavage approach, where hyaluronic acid methacrylate (HAMA) is mixed with gelatin methacryloyl to achieve high-performance bioprinting, followed by selectively enzymatic digestion of HAMA, resulting in tissue-matching mechanical properties without losing the structural complexity and fidelity. Our method allows cellular morphological and functional improvements across multiple bioprinted tissue types featuring a wide range of mechanical stiffness, from the muscles to the brain, the softest organ of the human body. This platform endows us to biofabricate mechanically precisely tunable constructs to meet the biological function requirements of target tissues, potentially paving the way for broad applications in tissue and tissue model engineering.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss accompanied by cytoplasmic localization of TDP-43 proteins and their insoluble accumulations. Haploinsufficiency of TBK1 has been found to associate with or cause ALS. However, the cell-autonomous mechanisms by which reduced TBK1 activity contributes to human motor neuron pathology remain elusive. Here, we generated a human cellular model harboring loss-of-function mutations of TBK1 by gene editing and found that TBK1 deficiency was sufficient to cause TDP-43 pathology in human motor neurons. In addition to its functions in autophagy, we found that TBK1 interacted with endosomes and was required for normal endosomal maturation and subsequent lysosomal acidification. Surprisingly, TDP-43 pathology resulted more from the dysfunctional endo-lysosomal pathway than the previously recognized autophagy inhibition mechanism. Restoring TBK1 levels ameliorated lysosomal dysfunction and TDP-43 pathology and maintained normal motor neuron homeostasis. Notably, using patient-derived motor neurons, we found that haploinsufficiency of TBK1 sensitized neurons to lysosomal stress, and chemical regulators of endosomal maturation rescued the neurodegenerative process. Together, our results revealed the mechanism of TBK1 in maintaining TDP-43 and motor neuron homeostasis and suggested that modulating endosomal maturation was able to rescue neurodegenerative disease phenotypes caused by TBK1 deficiency.
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.