Original PaperHigh performance liquid chromatography for the determination of glucosamine sulfate in human plasma after derivatization with 9-fluorenylmethyl chloroformateIn this study, we developed a simple, rapid, sensitive, and reliable method for the determination of glucosamine sulfate in human plasma, which was based on derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) followed by reverse-phase HPLC-FLD. For the first time, FMOC-Cl was introduced into derivatization of glucosamine sulfate in human plasma. The amino groups of glucosamine sulfate and vertilmicin sulfate (the internal standard) were trapped with FMOC-Cl to form glucosamine-FMOC-Cl and vertilmicin-FMOC-Cl adducts, which can be very suitable for HPLC-FLD. Precipitation of plasma proteins by acetonitrile was followed by vortex mixing and centrifugation. Chromatographic separation was performed on a C 18 column (DIAMONSIL 15064 mm id, 5 lm) with a mobile phase gradient consisting of acetonitrile and water at a flow-rate of 1 mL/min. The retention times of glucosamine-FMOC-Cl and vertilmicin-FMOC-Cl adducts were 8.9 and 21.2 min, respectively. This method was shown to be selective and sensitive for glucosamine sulfate. The limit of detection was 15 ng/mL for glucosamine sulfate in plasma and the linear range was 0.1 -10 mg/mL in plasma with a correlation coefficient (r) of 0.9999. The relative standard deviations (RSDs) of intra-day and inter-day assays were 5.2 -8.1% and 6.1 -8.5%, respectively. Extraction recoveries of glucosamine sulfate in plasma were greater than 90%. The validated method was successfully applied to the determination of glucosamine sulfate in human plasma samples.
A liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated for the assay of glucosamine sulfate in human plasma. Plasma proteins were precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was transferred and derivatized with phenyl iso-thiocyanate in acetonitrile at 60 degrees C for 40 min. Chromatographic separation was performed on a C(18) column (Inertsil ODS-3 150 x 2.1 mm i.d., 5 microm, JP) with a mobile phase gradient consisting of 0.2% acetic acid (aqueous) and methanol at a flow-rate of 0.3 mL/min. MS detection using electrospray ionization (ESI) as an interface was used in single ion monitoring mode to determine positive ions at m/z 297. This method was shown to be selective and sensitive for glucosamine sulfate. The limit of detection was 35 ng/mL for glucosamine sulfate in plasma and the linear range was 0.1-20 microg/mL in plasma with a correlation coefficient (r) of 0.9991. The relative standard deviations (RSDs) of intra-day and inter-day assays were 8.7-11.4 and 9.8-12.6%, respectively. Extraction recoveries of glucosamine sulfate in plasma were greater than 73%. This method proved to be simple, reproducible and feasible for pharmacokinetic studies of glucosamine sulfate in healthy volunteers after a single oral administration (1500 mg). The pharmacokinetic parameters and relative bioavailabilities were investigated for both domestic glucosamine sulfate tablet and capsule preparations compared with an imported capsule product.
A simple and reliable HPLC method was developed for the simultaneous quantitative analysis of diethylene glycol (DEG) and propylene glycol (PG) in pharmaceutical products by precolumn derivatization. The derivatization reagent p-toluenesulfonyl isocyanate (TSIC, 10 microL, 20% in ACN v/v) was added to 100 microL of the sample, and then 10 muL of water was added. The resulting derivatives were separated using a C(18)analytical column and a mobile phase composed of 0.01 M KH(2)PO(4)buffer (adjusted to pH 2.5 with phosphoric acid) and ACN (47:53 v/v) at 1 mL/min and 25 degrees C. For detection, UV light at 227 nm was used. The derivatization conditions including reaction time, temperature, and concentration of TSIC were optimized. The calibration curves were linear from 0.062 to 18.6 microg/mL (r(2)= 0.9999) and from 0.071 to 21.3 microg/mL (r(2) = 0.9999) for DEG and PG, respectively. The RSD values of intra- and interday assays were all below 4% for DEG and PG. The proposed method was then successfully applied to analyze two Armillarisin A injection samples and two spiked syrup samples.
A sensitive and reliable high-performance liquid chromatographic (HPLC) method, using a solid-phase extraction (SPE), was developed and validated for determination of leucovorin (LV) in human plasma. Plasma sample was extracted by using a Sep-Pak cartridge which could be renewable. The sample was analyzed by HPLC with UV detection at 286 nm. The method was shown to perform selectively and sensitively for LV. The main metabolite of LV, 5-methyltetrahydrofolic acid, and endogenous substances in plasma did not show any interference in the analysis. The limit of detection was 10 ng/mL for LV in plasma and the linear range was 50-1500 ng/mL in plasma. The relative standard deviation (RSD) of intra-day and inter-day assays was 2.8-6.1% and 2.4-5.3%, respectively. The extraction recoveries of LV in plasma were over 90%. The method was proved to be applicable to the pharmacokinetic study of LV in healthy volunteers after a single oral administration (75 mg). The pharmacokinetic parameters and relative bioavailability were investigated for domestic LV tablet and capsule vs an imported tablet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.