Abstract. In AsiaCCS 2011, Wang et al. proposed a two-level heuristic sieve algorithm for the shortest vector problem in lattices, which improves the Nguyen-Vidick sieve algorithm. Inspired by their idea, we present a three-level sieve algorithm in this paper, which is shown to have better time complexity. More precisely, the time complexity of our algorithm is 2 0.3778n+o(n) polynomial-time operations and the corresponding space complexity is 2 0.2833n+o(n) polynomially many bits.
In recent years, a lot of vulnerabilities of smart contracts have been found. Hackers used these vulnerabilities to attack the corresponding contracts developed in the blockchain system such as Ethereum, and it has caused lots of economic losses. Therefore, it is very important to find out the potential problems of the smart contracts and develop more secure smart contracts. As blockchain security events have raised more important issues, more and more smart contract security analysis methods have been developed. Most of these methods are based on traditional static analysis or dynamic analysis methods. There are only a few methods that use emerging technologies, such as machine learning. Some models that use machine learning to detect smart contract vulnerabilities cost much time in extracting features manually. In this paper, we introduce a novel machine learning-based analysis model by introducing the shared child nodes for smart contract vulnerabilities. We build the Abstract-Syntax-Tree (AST) for smart contracts with some vulnerabilities from two data sets including SmartBugs and SolidiFI-benchmark. Then, we build the Abstract-Syntax-Tree (AST) of the labeled smart contract for data sets named Smartbugs-wilds. Next, we get the shared child nodes from both of the ASTs to obtain the structural similarity, and then, we construct a feature vector composed of the values that measure structural similarity automatically to build our machine learning model. Finally, we get a KNN model that can predict eight types of vulnerabilities including Re-entrancy, Arithmetic, Access Control, Denial of Service, Unchecked Low Level Calls, Bad Randomness, Front Running, and Denial of Service. The accuracy, recall, and precision of our KNN model are all higher than 90%. In addition, compared with some other analysis tools including Oyente and SmartCheck, our model has higher accuracy. In addition, we spent less time for training .
Biometric encryption, especially based on fingerprint, plays an important role in privacy protection and identity authentication. In this paper, we construct a privacy-preserving linkable ring signature scheme. In our scheme, we utilize a fuzzy symmetric encryption scheme called symmetric keyring encryption (SKE) to hide the secret key and use non-interactive zero-knowledge (NIZK) protocol to ensure that we do not leak any information about the message. Unlike the blind signature, we use NIZK protocol to cancel the interaction between the signer (the prover) and the verifier. The security proof shows that our scheme is secure under the random oracle model. Finally, we implement it on a personal computer and analyze the performance of the constructed scheme in practical terms. Based on the constructed scheme and demo, we give an anonymous cryptocurrency transaction model as well as mobile demonstration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.