Objective: In this study, we examined the effects of pre-exercise H2 gas inhalation on physical fatigue (PF) and prefrontal cortex (PFC) activation during and after high-intensity cycling exercise.Methods: Twenty-four young men completed four study visits. On the first two visits, the maximum workload (Wmax) of cycling exercise of each participant was determined. On each of the other two visits, participants inhaled 20 min of either H2 gas or placebo gas after a baseline test of maximal voluntary isometric contraction (MVIC) of thigh. Then participants performed cycling exercise under their maximum workload. Ratings of perceived exertion (RPE), heart rate (HR) and the PFC activation by using functional near-infrared spectroscopy (fNIRS) was measured throughout cycling exercise. The MVIC was measured again after the cycling.Results: It was observed that compared to control, after inhaling H2 gas, participants had significantly lower RPE at each workload phase (p < 0.032) and lower HR at 50% Wmax, 75% Wmax, and 100% Wmax during cycling exercise (p < 0.037); the PFC activation was also significantly increased at 75 and 100% Wmax (p < 0.011). Moreover, the H2-induced changes in PF were significantly associated with that in PFC activation, that is, those who had higher PFC activation had lower RPE at 75% Wmax (p = 0.010) and lower HR at 100% Wmax (p = 0.016), respectively.Conclusion: This study demonstrated that pre-exercise inhalation of H2 gas can alleviate PF, potentially by maintaining high PFC activation during high-intensity exercise in healthy young adults.
(1) Background: Exercise that exceeds the body’s accustomed load can lead to oxidative stress and increased fatigue during intense training or competition, resulting in decreased athletic performance and an increased risk of injury, and the new medicinal H2 may be beneficial as an antioxidant. Therefore, we explored the effect of short-term supplementation of hydrogen-rich water (HRW) on the work performance and fatigue recovery of dragon boat athletes after training. (2) Methods: Eighteen dragon boat athletes who trained for 4 h a day (2 h in the morning and 2 h in the afternoon) were divided into an HRW group (n = 9) and a placebo water (PW) group (n = 9), drinking HRW or PW for 7 days. Each participant completed 30 s rowing dynamometer tests, monitoring the heart rate at baseline (i.e., Day 1) and after the intervention (on Day 8). (3) Result: Drinking HRW increased the maximum power and average power of the 30 s rowing test and decreased the maximum heart rate during the period. After the rowing test, the HRW group’s heart rate dropped significantly after 2 min of recovery, while the PW group’s heart rate did not drop. There was no significant difference between the 30 s rowing distance and the predicted duration of rowing 500 m. (4) Conclusions: Drinking HRW in the short term can effectively improve the power performance of dragon boat athletes and is conducive to the recovery of the heart rate after exercise, indicating that HRW may be a suitable means of hydration for athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.