The northwestern Sichuan Basin has experienced Meso-Cenozoic intracontinental compressional tectonic processes and formed multi-detachment stratigraphic distribution of foreland basins and fold-thrust belts, which have caused complicated structural deformations in the deep buried layers. Rapid uplift with accelerated erosion and two sets of detachments in the Lower Triassic and Lower Cambrian controlled the multilevel deformation structure. We conducted discrete numerical simulations with double weak detachments and erosion under extrusion conditions in order to examine the mechanics and kinematics of the frontalpiedmont zones of the NW Sichuan Basin. The following findings were made. (1) With continuous compression, the weak detachments promoted the decoupled and ladder-like deformation of the thrust belt, where the deformation above the slip layer extended further than it did below it. Rapid uplift and erosion at the thrust front contributed to the formation of a passive roof fault and a monocline in the upper layer, a series of forward and backward thin-skinned thrust-buried structures in the middle layer sandwiched between two weak detachments and stacking structures in the lower layer. (2) Erosion effectively prevents the deformation from propagating above the upper detachment, but can advance a horizontal transition in the deformation style generated within the middle brittle layer: from oblique and tight fault propagation folds to symmetrical, wide, and gentle detachment folds. (3) The model results consistent with tectonic deformation in the NW Sichuan Basin indicate a possible evolutionary mechanism under compression. There is hierarchical deformation of uncoordinated contraction controlled by the Lower Triassic and Early Cambrian weak layers, with the characteristics of the shallow monocline, the middle thin-skinned thrusts, and the deeper basement-involved folds. Continuous compression contributed a sequential pattern of steps as a whole, from the frontalpiedmont zones to the foreland basin, autochthonous stacking thrusts, and the huge buried structure in the NW Sichuan Basin. During the Himalayan period, syntectonic erosion along with the uplifted thrust front maintained the development of a passive-roof duplex and a huge forward buried structure.
The South China Sea (SCS) is the largest marginal sea in the western Pacific region. The region's unique tectonic location and sedimentary characteristics, that is, rich oil and gas resources, have attracted substantial attention from geologists and geophysicists worldwide. In this study, we focused on the Qiongdongnan Basin, an important natural gas exploration deep-water area in the northern continental shelf of the SCS. It is also the main area for continuous reserve increases in large and medium gas fields (Shi et al., 2019). One of the most important characteristics of the Qiongdongnan Basin is the structural differences in the distribution of structurally controlled sub-basins, and the fault orientation, as well as the structural styles along the length of the rift (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.