Considering that the world transport sector is the second largest contributor of global greenhouse gas (GHG) emissions due to energy use and the least decarbonized sector, it is highly recommended that all countries implement ambitious public policies to decarbonize this sector. In Mexico the transport sector generates the largest share of greenhouse gas emissions, in 2014 it contributed with 31.3% of net emissions. Two original scenarios for the Mexican transport sector, a no-policy baseline scenario (BLS) and a low carbon scenario (LCS) were constructed. In the LCS were applied 21 GHG mitigation measures, which far exceeds the proposals for reducing transport sector GHG emissions that Mexico submitted in its National Determined Contributions (NDC). As a result, the proposed LCS describes a sector transformation path characterized by structural changes in freight and passenger mobility, new motor technologies for mobility, introduction of biofuels, price signals, transportation practices and regulations, as well as urban planning strategies, which altogether achieve an accumulated reduction of 3166 MtCO2e in a 25 year period, producing a global net benefit of 240,772 MUSD and a GHG emissions’ reduction of 56% in 2035 in relation to the BLS.
The residential, commercial, and public sectors consume between 20% and 30% of final energy demand worldwide. Due to the intensive use of fossil fuels and conventional electricity, they also have an important participation in the emission of greenhouse gases (GHG). Taking Mexico as a case study, this article develops an alternative scenario that considers that in these sectors, buildings can generate energy for self-consumption or to supply it to the power network—for which four solar energy options are analyzed. In addition, to manage and rationalize the energy demand of these buildings, eight energy efficiency measures are studied. These options were selected on the basis that they are technically and economically feasible to implement in buildings in Mexico. The results reveal that by 2030, in relation to the GHG trend scenario, this mitigation scenario reduces 23.5 million tons of carbon dioxide equivalent (MtCO2e) in the residential (19 MtCO2e), commercial (2.6 MtCO2e), and public services sectors (1.9 MtCO2e), while by 2035 it reaches 45 MtCO2e; which far exceed the avoided emissions goals established in Mexico’s nationally determined contributions (NDC) for 2030 (5 MtCO2e) for the residential and commercial sectors. Therefore, it is possible to increase the ambition for mitigation in these sectors, as well as including the public sector, in a renewed Mexico’s NDC. This mitigation scenario generates a total economic benefit of $7.7 billion, which means that it does not generate an overall incremental cost, but requires an incremental investment of over $9 billion USD, which is a financing challenge to achieve this scenario.
Firewood is a solid biofuel that is widely used for cooking in Mexico’s residential sector. This study seeks to identify relevant factors in firewood consumption patterns, and their implications for climate change, gender, and health, and for energy poverty in Mexico, by climate region and socioeconomic level. For this purpose, a statistical analysis was conducted of recently published official information. We estimate that a total of 31.3 million Mexicans—26% of the total population—use firewood, and we have identified three main types of users: (i) exclusive firewood users (30%); (ii) mixed firewood users using firewood as their primary fuel (18%) and (iii) mixed firewood users using firewood as their secondary fuel source (52%). Total consumption of firewood was estimated at 116.6 PJ, while estimated greenhouse gas emissions were 8.1 million tCO2e. Out of all the households studied, 53% were in the tropical climate region; 59% were categorized as being in the “low” socioeconomic level; and 75% were in population centers comprising fewer than 2500 inhabitants. Some 68% of households do not pay for the acquisition of firewood, and for those households that do pay for the resource, estimated transactions total USD 286.9 million. Expenditures on firewood for energy represent up to 10% of household income. Finally, it was estimated that 15.7 million direct users of firewood are women who use the resource in three-stone fires, in which they expose themselves to health risks in doing so. In conclusion, main universal findings, the study’s limitations, and future research are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.